ISSN: 2252-861x (Print) Vol. 12 No. 1 Januari 2023

PENGARUH KOMBINASI JENIS GULA TERHADAP KARAKTERISTIK SUSU KEFIR WHEY

Indra Medi¹, Yoshi Lia Anggrayni² dan Imelda Siska²

¹ Mahasiswa Program Studi Agroteknologi Fakultas Pertanian UNIKS

² Dosen Program Studi Agroteknologi Fakultas Pertanian UNIKS

ABSTRACT

Penelitian ini bertujuan untuk mengetahui pengaruh kombinasi jenis gula terhadap kualitas organoleptik dan mutu kimia susu kefir whey. Penelitian ini dilaksanakan bulan November 2021 sampai Februari 2022 bertempat di Laboratorium Dasar Fakultas Pertanian Universitas Islam Kuantan Singingi, Teluk Kuantan. Penelitian ini menggunakan metode eksperimen dengn analisis sensori uji hedonic dengan 4 perlakuan yaitu KW1 tanpa gula (kontrol), KW2 gula aren 2,5% gula pasir 7,5%, KW3 gula aren 5% gula pasir 5%, KW4 gula aren 7,5% dan gula pasir 2,5%. Parameter yang diamati adalah uji organoleptik yang terdiri dari warna, aroma, dan rasa. Berdasarkan hasil penelitian menunjukan bahwa kombinasi jenis gula berpengaruh sangat nyata (P>0,01) terhadap warna susu kefir whey, sedangkan untuk aroma dan rasa tidak berpengaruh (P<0,01) terhadap susu kefir whey, Perlakuan terbaik yaitu pada perlakuan KW4 dengan pemberian gula aren 7,5% dan gula pasir 2,5%.

Kata Kunci: Uji organoleptik, fermentasi, gula aren, gula pasir.

THE EFFECT OF COMBINATION OF SUGAR TYPES ON THE CHARACTERISTICS OF WHEY KEFIR MILK

ABSTRACT

This study aims to determine the effect of the combination of types of sugar on the organoleptic and chemical quality of kefir whey milk. This research was carried out from November 2021 to February 2022 at the Basic Laboratory of the Faculty of Agriculture, Kuantan Singingi Islamic University, Teluk Kuantan. This study uses an experimental method with sensory analysis hedonic test with 4 treatments, namely KW1 without sugar (control), KW2 palm sugar 2.5% granulated sugar 7.5%, KW3 palm sugar 5% sugar 5%, KW4 palm sugar 7, 5% and 2.5% granulated sugar. The parameters observed were organoleptic tests consisting of color, aroma, and taste. Based on the results of the study showed that the combination of types of sugar had a very significant effect (P>0.01) on the color of kefir whey milk, while for aroma and taste it had no effect (P<0.01) on kefir whey milk. The best treatment was the KW4 treatment with giving 7.5% palm sugar and 2.5% granulated sugar.

Keywords: organoleptic test, fermentation, palm sugar, granulated sugar

PENDAHULUAN

Susu merupakan bahan makanan yang istimewa bagi manusia karena kelezatan dan komposisinya yang ideal selain air susu mengandung semua zat yang dibutuhkan oleh tubuh, semua zat makanan yang terkandung didalam air susu dapat diserap oleh darah dan dimanfaatkan oleh tubuh.Menurut Anjarsari (2010), komposisi kimia yang terkandung dalam susu diantaranya lemak 3,8%, protein 3,2%, laktosa 4,7%, abu 0,855, air 87,25%, serta bahan kering 12,75%. Kandungan gizi yang lengkap menjadi alasan tingginya kebutuhan dan permintaan masyarakat akan susu.

Susu segar banyak dikonsumsi oleh masyarakat yang mempunyai kandungan gizi

yang lengkap untuk memenuhi kebutuhan nutrisi tubuh, susu memiliki pH antara 6,5 sampai 6,6 % yang merupakan kondisi yang menguntungkan bagi pertumbuhan mikroorganisme karena pH mendekati normal sehingga susu mudah rusak (Nurhadi, 2012).

Kualitas susu dapat ditentukan dari banyaknya kontaminasi kuman atau bakteri di dalamnya, karena dapat mengubah sifat kimia, fisik, dan organoleptik sehingga kerusakan susu terjadi dengan cepat (Syarif et al., 2011). Banyaknya jumlah kuman dalam susu juga dapat dipengaruhi oleh waktu pemerahan. Pemerahan pagi hari yang jumlah produksinya lebih banyak dari pada pemerahan sore hari,

ISSN: 2252-861x (Print) Vol. 12 No. 1 Januari 2023

ternyata total plate count (TPC) pemerahan pagi hari lebih tinggi daripada pemerahan sore hari (Fahyudi, 2010). Kandungan gizi yang tinggi pada susu merupakan media yang sangat sesuai dan disukai oleh mikroba untuk tumbuh dan berkembang.

Mikroba dapat mencemari susu dalam waktu singkat sehingga susu dapat menjadi tidak layak konsumsi bila tidak ditangani dengan benar (Saleh, dalam Miskiyah, 2009). Untuk mempertahankan kandungan gizi pada susu dan memperpanjang masa simpan susu, dapat dilakukan pengolahan lebih lanjut fermentasi.

Fermentasi adalah salah satu cara untuk menghindari kerusakan susu sapi. difermentasi dengan cara menginokulasi susu dipasteurisasi telah dengan mikroorganisme yang diketahui sebagai biakan pemula (starter cultur). Salah satu sumber mikroorganisme yang dapat digunakan sebagai starter cultur dalam proses fermentasi adalah kefir grains. Bakteri asam laktat seperti Lactobacillus lactis, Lactobacillus delbrueckii subsp. bersama ragi terdapat dalam kefir grains menghasilkan asam dan alkohol. Berdasarkan penelitian yang dilakukan oleh Otes dan Cagindi (2003), waktu fermentasi susu segar dengan kefir grains dilakukan selama 18-24 jam dengan kandungan protein dalam susu kefir sebesar 3,3 %.

Produk fermentasi susu telah banyak diproduksi dan dijumpai masyarakat, yaitu yoghurt dan keju. Selain yoghurt dan keju yang beredar di kalangan masyarakat terdapat jenis fermentasi susu yang juga berpotensi untuk di kembangkan di kalangan masyarakat, yaitu kefir.

Kefir merupakan hasil olahan susu fermentasi yang berasal dari pegunungan Kaukasus (Tratnik et al., 2006). Kefir memiliki rasa, warna dan konsistensi yang menyerupai yogurt dan memiliki aroma khas yeasty (seperti tape) (Usmiati, 2007). Kefir juga dikenal dengan beragam nama yang berbeda-beda seperti kippe, kepi, khapov, khephir, dan kiaphir 2007). (Sarkar, Kefir grains (biji kefir) mengandung campuran mikroba kompleks yang terdiri dari bakteri asam laktat (Lactobacillus spp., Lactococcus spp., Leuconostocs spp., Streptococcus spp.), khamir (Candida spp., Kluyveromyces spp., Saccharomyces spp., Torulopsis spp., Zygosaccharomyces spp.) dan kemungkinan bakteri asam asetat (Acetobacter spp.) (Güzel-Seydim et al., 2000; Witthuhn et al., 2004).

Kefir merupakan jenis susu fermentasi asal pegunungan Kaukasus yang memiliki rasa asam beralkohol, konsistensi seperti krim dan sedikit berbuih. Produk ini telah banyak dikonsumsi dibeberapa negara Asia dan Skandinavia. Kefir mudah dicerna oleh individu vang toleran terhadap laktosa karena laktosa telah dicerna menjadi glukosa dan galaktosa oleh enzim laktase dari mikroba stater. Kefir dibagi menjadi lima jenis yaitu kefir prima, kefir whey, kefir optima, kefir prima super, dan kefir kolostrum (Usmiati, 2011). Masalah yang dihadapi pada kefir ini adalah rasa kefir yang asam dan beralkohol yang kurang disukai oleh konsumen. Salah satu inovasi yang dapat dilakukan yaitu dengan penambahan beberapa jenis gula pada kefir whey.

Kefir whey atau yang biasa dikenal sebagai kefir bening berasal dari hasil pemisahan pemisahan pada saat proses fermentasi dengan lama fermentasi antara 24 sampai 30 jam (Asosiasi Kefir Susu Indonesia, 2016). Kefir jenis ini merupakan minuman isotonik yang sangat baik karena paling sesuai dengan cairan tubuh manusia pada umumnya (Suriasih dan Sucipta, 2014). Kefir jenis ini juga digunakan sebagai bahan dalam pembuatan sauerkraut dan pengganti cuka dapur yang aman bagi penderita iritasi lambung. Kefir ini dapat mengatasi dehidrasi baik akibat panas yang menyebabkan keluarnya keringat yang berlebih maupun sebagai bahan pengganti oralit karena kandungan kefir whey yang lebih bagus dan seimbang dari pada oralit. Kefir biasanya dibuat secara tradisional sehingga grain dan teknologi yang digunakan juga berbeda begitu pula dengan hasil produknya.

Pembuatan kefir whey diawali dengan proses pasteurisasi susu sapi segar pada suhu 70°C selama 15 detik. Susu selanjutnya ditambahkan kefir grains sebanyak 5% dari total susu dan difermentasikan dalam toples yang ditutup plastic wrap pada suhu ruang dan di tempat kedap cahaya dengan berbagai lama fermentasi (12 jam; 24 jam; 36 jam dan 48 jam). Kefir kemudian disaring menggunakan saringan untuk memisahkan kefir dengan kefir grain, dan dilanjutkan dengan proses penyaringan kedua menggunakan kain putih yang dilakukan di dalam suhu refrigerasi selama 24 jam (Asosiasi Kefir Indonesia, 2016).

Gula merupakan salah satu pemanis yang umum dikonsumsi masyarakat. Gula biasa Jurnal Green Swarnadwipa ISSN: 2715-2685 (Online)

ISSN: 2252-861x (Print) Vol. 12 No. 1 Januari 2023

digunakan sebagai pemanis di makanan maupun minuman, dalam bidang makanan, selain sebagai pemanis, gula juga digunakan sebagai stabilizer dan pengawet. Gula merupakan suatu karbohidrat sederhana yang umumnya dihasilkan dari tebu. Namun ada juga bahan dasar pembuatan gula yang lain, seperti air bunga kelapa, aren, palem, kelapa atau lontar (Yoyon, 2019).

Menurut Darwin (2013), gula adalah suatu karbohidrat sederhana karena dapat larut dalam air dan langsung diserap tubuh untuk diubah menjadi energi. Secara umum, gula dibedakan menjadi dua, yaitu (a) Monosakarida, yaitu mono yang berarti satu, artinya terbentuk dari satu molekul gula. Yang termasuk monosakarida adalah glukosa, fruktosa, galaktosa, (b) Disakarida yang berarti terbentuk dari dua molekul gula. Yang termasuk disakarida adalah sukrosa (gabungan glukosa dan fruktosa), laktosa (gabungan dari glukosa dan galaktosa) dan maltosa (gabungan dari dua glukosa).

Proses fermentasi susu kefir membutuhkan makanan yang menyediakan sumber energi dan sumber karbon untuk

METODE PENELITIAN Waktu dan Tempat

Penelitian ini dilaksanakan pada bulan November 2021 sampai dengan Februari 2022 di Laboratorium Dasar Fakultas Pertanian Universitas Islam Kuantan Singingi.

Alat dan Bahan

Alat yang digunakan dalam penelitian adalah toples ukuran 2 liter, teko, wadah plastik, sendok, pengaduk kayu, saringan Peralatan yang akan digunakan terlebih dahulu di sterilisasi dengan cara mencuci peralatan dengan air hangat untuk mematikan bakteri yang menempel pada peralatan. Sedangkan bahan yang akan digunakan terlebih dahulu ditimbang seperti bibit kefir sesuai dengan perlakuan dan menimbang susu UHT untuk masing-masing perlakuan.yang halus, gelas ukur, cup plastik ukuran kecil, dan timbangan analitik. Sedangkan bahan yang digunakan dalam penelitian adalah susu UHT 5 liter, grain kefir/bibit kefir 240 gr, dan air mineral secukupnya untuk mencuci grain kefir.

Rancangan Penelitian

Penelitian ini menggunakan metode eksperimen dengan 4 perlakuan. Adapun perlakuan yang dilakukan yaitu:

biosintesis sel. Pada umumnya menggunakan gula pasir untuk kebutuhan tersebut. Selain itu, dapat dibuat dari buah-buahan kering seperti kismis dan potongan kecil lemon. Gula pasir dan kismis merupakan bahan bakar yang digunakan dalam proses fermentasi terutama siklus glikolisis (Purwoko, 2007 dalam Gunawan, 2015). Alternatif penggunaan sukrosa pada penelitian ini, digunakan gula merah. Gula merah umumnya digunakan sebagai bahan baku penunjang saja, padahal gula merah memilki komposisi gizi yang lebih baik dibandingkan dengan gula pasir. Utami (2008) menyatakan bahwa mengkonsumsi gula pasir atau gula kristal putih sama saja dengan mengkonsumsi kalori yang tidak memiliki maanfaat nutrisi, hal ini disebabkan karena kandungan nutrisi di dalam gula pasir ini sangat minim. Sedangkan gula merah memiliki kandungan kalsium, fosfor dan zat besi yang lebih tinggi dibandingkan gula pasir.Subagjo (2007) mengatakan fungsi gula dalam produk antara lain sebagai bahan penambah rasa dan sebagai bahan perubah warna kulit produk.

KW1 = Kefir whey tanpa gula (Kontrol)

KW2 = Kefir whey di tambah Gula aren 2,5% : Gula tebu 7,5%

KW3 = Kefir whey di tambah Gula aren 5% : Gula tebu 5%

KW4 = Kefir whey di tambah Gula aren 7,5% : Gula tebu 2,5%

Parameter Penelitian Uji organoleptic

Pengujian organoleptik yang dilakukan terdiri dari pengujian warna, aroma, rasa. Pengujian organoleptik dilakukan oleh 30 orang panelis tidak terlatih dari kalangan mahasiswa dengan mengisi kuisioner penilaian yang telah disediakan.

Prosedur Penelitian Persiapan Alat dan Bahan

Peralatan yang akan digunakan terlebih dahulu di sterilisasi dengan cara mencuci peralatan dengan air hangat untuk mematikan bakteri yang menempel pada peralatan. Sedangkan bahan yang akan digunakan terlebih dahulu ditimbang seperti bibit kefir sesuai dengan perlakuan dan menimbang susu UHT untuk masing-masing perlakuan.

Pembuatan Larutan Gula

ISSN: 2252-861x (Print)

Vol. 12 No. 1 Januari 2023

Metode pembuatan larutan gula diadopsi dari Rahmah (2016). Gula sebagai bahan baku yang terdiri dari jenis gula merah aren dan gula pasir. Untuk gula merah aren dilakukan terlebih penghancuran dahulu, memudahkan dalam pelarutan. Kemudian gula merah aren dan gula tebu ditimbang sesuai dengan perlakuan yaitu gula aren 2,5% : gula tebu 7,5%; gula aren 5% : gula tebu 5%; dan gula aren 7,5% : gula tebu 2,5%. Gula merah vang telah hancur kemudian dilarutkan dalam air hangat bersama gula tebu sampai benar-benar kemudian larutan larut, baru dingin kembali ditambahkan air volumenya sesuai dengan volume yang dibutuhkan. Perbandingan antara air dan gula yang digunakan yaitu 4: 1 (air 400 ml : gula 100 Larutan gula selanjutnya dilakukan penyaringan. Fungsi penyaringan ini adalah memisahkan larutan dari untuk gula pengotornya seperti kerikil dan daun kering.

Pembuatan susu kefir whey

Proses pembuatan kefir whey di adopsi dari Rahmahet al. (2016), dimana pembuatan kefir whey di awali dengan melarutkan gula aren

HASIL DAN PEMBAHASAN Uji Warna Susu Kefir

Pengaruh kombinasi jenis gula terhadap nilai Organoleptik warna pada susu kefir whey,

dan gula pasir dengan air hangat, kemudian larutan gula di saring untuk memisahkan kotoran pada larutan gula. Setelah larutan gula dingin, larutan tersebut di campurkan dalam susu UHT dan di aduk hingga homogen. Kemudian susu di tambahkan biji kefir sebanyak 5% dari total volume susu, selanjutnya susu dan biji kefir di aduk sebentar dan di fermentasi pada suhu 25°C selama 48 jam, 24 jam pertama, susu kefir disaring untuk memisahkan susu dengan bibit kefir. Kemudian susu kefir di fermentasi kembali selama 24 iam tanpa bibit kefir, setelah proses fermentasi selesai, di lakukan pemisahan antara kefir whey dan curd.

Analisis Data

Data organoleptik yang diperoleh akan dianalisis menggunakan analisis sensori uji hedonik dengan 4 perlakuan. Hasil penilaian ditabulasi dalam suatu tabel, untuk kemudian ANOVA dilakukan analisis (Analisis Variance). Apabila hasil ANOVA menunjukan nilai F hitung berbeda nyata, maka akan dilakukan uji lanjut dengan menggunakan uji sebaran Duncan's multiple Range (DMRT) (Setyaningsih et al., 2010).

nilai rata-rata dan uji hedonik warna susu kefir whey di sajikan pada tabel di bawah.

Table 1. Rataan Skor Warna Susu kefir Whey Dengan Penambahan Jenis gula

Perlakuan	Rata-Rata Penilaian
KW1 tanpa gula (kontrol)	2 ^A
KW2 gula aren 2,5% :gula tebu 7,5%	3^{B}
KW3 gula aren 5% : gula tebu 5%	
KW4 gula aren 7,5% : gula tebu 2,5%	3^{B}
	3^{B}
Rataan	3

Keterangan: Notasi dengan huruf yang berbeda pada kolom yang sama menunjukkan perbedaan yang nyata pada taraf 0,01 (P<0,01).

analisis menunjukan Hasil bahwa kombinasi jenis gula berpengaruh sangat nyata (P>0,01) terhadap warna susu kefir whey. Nilai rata-rata warna susu kefir whey dari yang tertinggi hingga terendah yaitu KW4= 3, KW3= 3, KW2= 3, KW1= 2. Tingginya nilai rata-rata pada perlakuan KW 4 di karenakan pemberian gula aren sebanyak 7,5% dan gula tebu 2,5% yang menghasilkan warna sebanyak

coklat. Sedangkan nilai rata-rata terendah yaitu pada perlakuan KW 1 tanpa gula (kontrol).

Atribut warna susu kefir whey pada KW1 cenderung perlakuan lebih putih kekuningan, di karenakan perlakuan KW1 tanpa gula (kontrol). Jaya et Al. (2017) ketika susu kefir whey ditambahkan kombinasi jenis gula dengan konsentrasi yang berbeda menghasilkan warna coklat. Warna kecokalatan muncul karena bahan dasar gula aren yang

ISSN: 2252-861x (Print)

Vol. 12 No. 1 Januari 2023

digunakan sehingga menyebabkan warna pada kefir whey cenderung kecoklatan. Menurut Busyro (2013), warna adalah sensasi yang yang dihasilkan ketika suatu energi cahaya mengenai dimana cahaya tersebut benda, ditransmisikan secara langsung yang akan dilihat oleh mata pengamat. Warna secara psikologis, bukanlah suatu gejala yang hanya dapat diamati saja. Warna itu memegang peranan penting dalam penilaian estetis dan turut menentukan suka tidaknya terhadap suatu benda.

Warna dari aspek kognitif kecerahan. warna akan menarik perhatian. Sedangkan menurut Lawlees dan Heyman (2010) dalam Harun, et al. (2013), warna merupakan salah satu parameter yang digunakan untuk menilai suatu produk pangan dan dapat menunjang kualitasnya.

Uji Aroma Susu Kefir

Pengaruh kombinasi jenis gula terhadap nilai Organoleptik aroma pada susu kefir whey, nilai rata-rata dan uii hedonik aroma susu kefir whey di sajikan pada tabel di bawah.

Tabel 2. Rataan Skor Uii Aroma Susu Kefir Dengan Penambahan Jenis Gula

Perlakuan	Rata-Rata Penilaian
KW1 tanpa gula (kontrol)	4
KW2 gula aren 2,5% :gula tebu 7,5%	3
KW3 gula aren 5% : gula tebu 5%	4
KW4 gula aren 7,5% : gula tebu 2,5%	3
5.	
Rataan	4

Keterangan : Kriteria Penilaian (1) Tidak asam, (2) Sedikit asam, (3) Aroma khas kefir, (4) Asam dan beraroma kefir, (5) Sangat asam dan beraroma kefir

Hasil analisis menunjukan bahwa kombinasi jenis gula tidak berpengaruh nyata (P<0,01) terhadap aroma susu kefir whey. Nilai rata-rata warna susu kefir whey dari yang tertinggi hingga terendah yaitu 4 (KW 3), 4 (KW 1), 3 (KW 2), 3 (KW4). Tingginya nilai rata-rata pada perlakuan KW 3 (3,7) dikarenakan pemberian gula aren 5%, dan gula tebu sebanyak 5%.

Nilai aroma pada susu kefir whey memiliki aroma yang sedikit asam, interaksi jenis gula berpengaruh terhadap aroma diduga disebabkan karena selama fermentasi kefir whey akan menghasilkan aroma alkohol seperti tape. Aroma yang menyerupai tape disebabkan karena adanya alkohol dan ester yang tinggi Sehingga baik gula aren maupun gula tebu akan menghasilkan aroma asam dan menutupi aroma khas bahan baku sebelum difermentasikan.

Menurut Mubin, dkk. (2016), kefir memiliki aroma alkohol mirip tape yang disebabkan adanya aktivitas khamir dari biji kefir. Salah satu jenis khamir tersebut adalah Saccharomyces cereviceae yang menghasilkam enzim zimase dan invertase. Enzim invertase mengubah sukrosa menjadi inver gula (glukosa dan fruktosa) yang difermentasikan secara langsung. Sementara enzim zimase mengubah glukosa dan fruktosa menjadi CO2 dan

etilalkohol. Selain itu, pada jurnal penelitian kefir teh daun sirsak, aroma kefir disebabkan oleh senyawa-senyawa volatil yang terbentuk sehingga menimbukan aroma asam khas. Asam laktat dan asetaldehid yang dihasilkan menyebabkan penurunan pH media fermentasi atau meningkat keasaman dan menimbulkan aroma khas (Musdholifah, et al., 2016).

Uji Rasa Susu Kefir

Hasil analisis menunjukan bahwa kombinasi jenis gula tidak berpengaruh nyata (P<0,01) terhadap aroma susu kefir whey. Nilai rata-rata warna susu kefir whey dari yang tertinggi hingga terendah yaitu 4 (KW 3), 4 (KW 1), 3 (KW 2), 3 (KW4). Tingginya nilai rata-rata pada perlakuan KW 3 (3,7) dikarenakan pemberian gula aren 5%, dan gula tebu sebanyak 5%.

Nilai aroma pada susu kefir whey memiliki aroma yang sedikit asam, interaksi jenis gula berpengaruh terhadap aroma diduga disebabkan karena selama fermentasi kefir whey akan menghasilkan aroma alkohol seperti tape. Aroma yang menyerupai tape disebabkan karena adanya alkohol dan ester yang tinggi Sehingga baik gula aren maupun gula tebu akan menghasilkan aroma asam dan menutupi aroma khas bahan baku sebelum difermentasikan.

ISSN: 2252-861x (Print)

Vol. 12 No. 1 Januari 2023

Menurut Mubin, dkk. (2016), kefir memiliki aroma alkohol mirip tape yang disebabkan adanya aktivitas khamir dari biji kefir. Salah satu jenis khamir tersebut adalah Saccharomyces cereviceae yang menghasilkam enzim zimase dan invertase. Enzim invertase mengubah sukrosa menjadi inver gula (glukosa dan fruktosa) yang difermentasikan secara langsung. Sementara enzim zimase mengubah glukosa

dan fruktosa meniadi CO2 dan etilalkohol. Selain itu, pada jurnal penelitian kefir teh daun sirsak, aroma kefir disebabkan oleh senyawa-senyawa volatil yang terbentuk sehingga menimbukan aroma asam khas. Asam laktat dan asetaldehid yang dihasilkan menyebabkan penurunan pH media fermentasi atau meningkat keasaman dan menimbulkan aroma khas (Musdholifah, et al.,

Tabel 3. Rataan Skor Uji Rasa Susu Kefir Whey Dengan Penambahan Jenis Gula

Perlakuan	Rata-Rata Penilaian
KW1 tanpa gula (kontrol)	4
KW2 gula aren 2,5%: gula tebu 7,5%	4
KW3 gula aren 5%: gula tebu 5%	3
KW4 gula aren 7,5%; gula tebu 2,5%	4
Rataan	4

Keterangan : Kriteria Penilaian (1) Tidak asam, (2) Sedikit asam, (3) Aroma khas kefir, (4) Asam dan beraroma kefir, (5) Sangat asam dan beraroma kefir

Hasil analisis menunjukan bahwa kombinasi jenis gula berpengaruh tidak nyata (P>0,01) terhadap rasa susu kefir whey. Nilai rata-rata rasa susu kefir whey dari yang tertinggi hingga terendah yaitu 4 (KW 4), 4 (KW 2), 4 (KW 1), 3 (KW3). Tingginya nilai rata-rata pada perlakuan KW 4 (4, 1), dikarenakan pemberia< gula aren sebanyak 7,5% dan gula tebu sebanyak 2,5% yang menghasilkan rasa dari gula aren lebih dominan dibandingkan dengan perlakuan vang lain.

Rasa pada minuman kefir disebabkan karena bakteri akan menghasilkan komponen flavor, ragi akan menghasilkan karbondioksida

KESIMPULAN DAN SARAN

Hasil analisis menunjukan kombinasi jenis gula berpengaruh tidak nyata (P>0,01) terhadap rasa susu kefir whey. Nilai rata-rata rasa susu kefir whey dari yang tertinggi hingga terendah yaitu 4 (KW 4), 4 (KW 2), 4 (KW 1), 3 (KW3). Tingginya nilai rata-rata pada perlakuan KW 4 (4, 1), dikarenakan pemberia< gula aren sebanyak 7,5% dan gula tebu sebanyak 2,5% yang menghasilkan rasa dari gula aren lebih dominan dibandingkan dengan perlakuan yang lain.

Rasa pada minuman kefir disebabkan karena bakteri akan menghasilkan komponen flavor, ragi akan menghasilkan karbondioksida dan alkohol. Itulah sebabnya rasa kefir asam dan terdapat rasa alkohol serta soda. Kombinasi dan alkohol. Itulah sebabnya rasa kefir asam dan terdapat rasa alkohol serta soda. Kombinasi alkohol dan karbondioksida menghasilkan buih (Yusriah, 2014).

Gula merah aren sebagai bahan baku mempunyai cita rasa dan aroma spesifik yang tidak dapat digantikan oleh gula putih atau pemanis lainnya. Asam-asam organik yang ada di dalam gula merah aren seperti asam malat, asam sitrat dan asam laktat akan memberikan rasa vang khas, dikarenakan asam-asam organik diketahui mempunyai peran penting dalam cita rasa makanan (Saputra, et al., 2015).

KESIMPULAN

alkohol dan karbondioksida menghasilkan buih (Yusriah, 2014).

Gula merah aren sebagai bahan baku mempunyai cita rasa dan aroma spesifik yang tidak dapat digantikan oleh gula putih atau pemanis lainnya. Asam-asam organik yang ada di dalam gula merah aren seperti asam malat. asam sitrat dan asam laktat akan memberikan rasa yang khas, dikarenakan asam-asam organik diketahui mempunyai peran penting dalam cita rasa makanan (Saputra, et al., 2015).

SARAN

Dari hasil peneliti penulis menyarankan agar dilakukan penelitian lanjut mengenai penguijan nutrisi susu kefir.

DAFTAR PUSTAKA

- Anjarsari, B. 2010. Pangan Hewani. Yogyakarta: Graha Ilmu.
- Asosiasi Kefir Susu Indonesia. 2016. Pedoman Pembuatan dan Pemanfaatan Kefir. Rumah Kefir Bandung, Bandung.
- Busyro, M. 2013. Laporan Praktikum Penilaian Sensori Pangan (Cicip, BAu, Aroma dan Rasa Makanan. https://muzhoffarbusyro.wordpress.com. Diakses: 24 November 2016.
- Darwin, Phipips. 2013. Menikmati Gula Tanpa Rasa Takut. Perpustakaan Nasional, Sinar Ilmu.
- Guzel-Seydim, Z.B., Seydim A.C., Greene A.K., and Bodine A.B. 2000. Determination of Organic Acids and Volatile Flavor Substances in Kefir During Fermentation. Journal of Food Composition and Analysis 13: 35-43.
- Harun, N., Rahmayuni, dan Y. E. Sitepu. 2013. Penambahan Gula.
- Jaya, Firman., Parwadi, dan Wahyu Novia Widodo. 2017. Penambahan madu pada minuman whey kefir ditinjau dari mutu organoleptik, warna, dan kekeruhan . Jurnal Ilmu dan Teknologi Hasil Ternak. Vol. 12(1): 16-21.
- Kelapa dan Lama Fermentasi Terhadap Kualitas Susu Fermentasi Kacang Merah (*Phaesolus vulgaris L.*). SAGU, September 2013 Vol. 12 No. 2 9-14. ISSN 1412-4424.
- Mubin, M. F. dan E. Zubaidah. 2015. Studi Pembuatan Kefir Nira Siwalan (*Borassus flabellifer L.*) (Pengaruh pengenceran Nira Siwalan dan Metode Inkubasi). *Jurnal Pangan dan Argoindustri* 4(1): 291-301.
- Nurhadi, M. (2012). Kesehatan Masyarakat Veteriner (*Higiene Bahan Pangan Asal Hewan dan Zoonosis*). Yogyakarta: Gosyen Publishing.

- Ot'es, Semih. and Cagindi, Oz'em., 2003. Kefir:

 A Probiotic DairyComposition,
 Nutritional and Therapeutic Aspects.

 Pakistan Journal of Nutrition (Online),
 vol. 2, No. 2.
- Saleh, E. 2009. Teknologi Pengolahan Susu dan Hasil Ikutan Ternak. Medan: Universitas Sumatra Utara.
- Saputra, K. A., J. S. Pontoh, dan L. I. Momuat. 2015. Analisis Kandungan Asm Organik Pada Beberapa Sampel Gula Aren. Jurnal Mipa Unsrat Online 4 (1) 69-74.
- Sarkar, S. 2007. Potential of Kefir as A Dietetic Beverage–A Review. *British Journal of Nutrition* 109: 280-290.
- Subagyo. 2007. Kadar Gula Dalam Makanan. Jakarta: Gramedia.
- Suriasih, K. dan I.N. Sucipta. 2014. Susu Sapi Bali Sebagai Satvika Bhoga. Udayana University Press, Denpasar.
- Setyaningsih, Dwi, Anton Apriyantono dan Maya Puspita Sari. 2010. Analisis Sensori untuk Industri Pangan dan Argo. Bogor: IPB Press.
- Tratnik, L., Bozanic, R., Herceg, Z., and Drgalic, I. 2006. The Quality of Plain and Supplemented Kefir from Goat's and Cow's Milk. *International Journal of Dairy Technology* 59: 40-46.
- Usmiati, S. dan Abubakar. (2011). Teknologi Pengolahan Susu. Artikel Balai Besar Penelitian dan Pengembangan Pasca panen Pertanian. Bogor. Tersedia di http://peternakan.litbang.pertanian.go.id/fullteks/booklet/percepatan_produksi_susu_2012/Dddug_3.pdf?secure=1 (30 Agustus 2016).
- Utami, M. F. 2008. Studi Pengembagan Usaha Gula Merah Tebu di Kabupaten Rembang. www. scribd.com. Diakses : 20 Agustus 2016.

Jurnal Green Swarnadwipa ISSN: 2715-2685 (Online)

ISSN: 2252-861x (Print) Vol. 12 No. 1 Januari 2023

Yoyon. 2019. Kajian Konsentrasi Gula Merah Terhadap Sifat Kimia dan Organoleptik Dodol Kawista. Skripsi. Universitas Muhammadiysh Mataram, Mataram

Yusriah, N. H. dan R. Agustini. 2014. Pengaruh Waktu Fermentasi dan Konsentrasi Bibit Kefir terhadap Mutu Kefir Susu Sapi. *UNESA Jurnal of Chemistry* Vol. 3, No. 2, May 2014.