Application Techniques of Photosynthesis Bacteria and Its Effect on The Growth and Yield of Local Bantul Shallot Variety (Allium cepa var. aggregatum cv. Crok Kuning)
Abstract
Shallots represent a pivotal commodity catering to household needs in Indonesia; however, their production has failed to meet the escalating demand. Consequently, technological interventions to enhance production are imperative, with one promising opportunity being the application of photosynthetic bacteria (PSB). One may apply PSB through direct soil infusion or foliar spraying. This study seeks to elucidate the differential impacts of varied PSB application techniques on the growth and yield of the local Bantul shallot variety. Conducted from September to December 2022. the research employed a Complete Randomized Block Design (RCBD), incorporating a fertilization factor with four tiers: absence of fertilizer, NPK fertilizer 16:16:16 + PSB via pouring, NPK fertilizer 16:16:16 + PSB via spraying, and NPK fertilizer 16:16:16. Each treatment underwent ten replications. Subsequent to data acquisition, variance analysis was employed, followed by an honestly significant difference test (HSD Tukey) at a 5% error rate. Outcomes revealed that PSB provision led to heightened root length, chlorophyll content, nitrate reductase activity, fresh and dry weights of roots and shoots, bulb count per clump, fresh and dry weights of bulbs per clump, and overall productivity. The optimal PSB application technique, identified as pouring into the growing media, resulted in a significant 31.28% improvement in shallot productivity.Downloads
References
Agung, I. G. A. M. S., & DIara, I. W. (2019). Biostimulants enhanced seedling root growth and bulb yields of true seed shallots (Allium cepa var aggregatum L.). International Journal of Environment, Agriculture and Biotechnology, 4(3), 598–601. https://doi.org/10.22161/ijeab/4.3.2
Andreolli, M., Zapparoli, G., Angelini, E., Lucchetta, G., Lampis, S., & Vallini, G. (2019). Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiological Research, 219. 123–131. https://doi.org/10.1016/j.micres.2018.11.003
Batool, K., Tuz Zahra, F., & Rehman, Y. (2017). Arsenic-Redox Transformation and Plant Growth Promotion by Purple Non-sulfur Bacteria Rhodopseudomonas palustris CS2 and Rhodopseudomonas faecalis SS5. BioMed Research International, 2017. 1–8. https://doi.org/10.1155/2017/6250327
Coombs, J., Hall, D. O., & Long, S. P. (1985). Techniques in Bioproductivity and Photosynthesis (2nd ed.). Elsevier Science.
De Oliveira Siqueira Lino, J., Delmondes Mudo, L. E., Texeira Lobo, J., Lucena Cavalcante, Í. H., De Luna Souto, A. G., Guimarães Sanches, L., & Borges De Paiva Neto, V. (2023). Application of Rhodopseudomonas palustris Moderates Some of the Crop Physiological Parameters in Mango Cultivar' Keitt.' Erwerbs-Obstbau, 65(5), 1633–1645. https://doi.org/10.1007/s10341-023-00863-2
Faria, D. R., Sakita, K. M., Capoci, I. R. G., Arita, G. S., Rodrigues-Vendramini, F. A. V., De Oliveira Junior, A. G., Soares Felipe, M. S., Bonfim De Mendonça, P. D. S., Svidzinski, T. I. E., & Kioshima, E. S. (2020). Promising antifungal activity of new oxadiazole against Candida krusei. PLOS ONE, 15(1), e0227876. https://doi.org/10.1371/journal.pone.0227876
Fauzan, M. (2016). Pendapatan, risiko dan efisiensi ekonomi usahatani bawang merah di Kabupaten Bantul. AGRARIS: Journal of Agribusiness and Rural Development Research, 2(2), 107–117. https://doi.org/10.18196/agr.2231
Feng, K., Cai, Z., Ding, T., Yan, H., Liu, X., & Zhang, Z. (2019). Effects of potassium‐solubulizing and photosynthetic bacteria on tolerance to salt stress in maize. Journal of Applied Microbiology, 126(5), 1530–1540. https://doi.org/10.1111/jam.14220
Ge, H., & Zhang, F. (2019). Growth-Promoting Ability of Rhodopseudomonas palustris G5 and Its Effect on Induced Resistance in Cucumber Against Salt Stress. Journal of Plant Growth Regulation, 38(1), 180–188. https://doi.org/10.1007/s00344-018-9825-8
George, D. M., Vincent, A. S., & Mackey, H. R. (2020). An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. Biotechnology Reports, 28. e00563. https://doi.org/10.1016/j.btre.2020.e00563
Hua, J., Lin, X., Yin, R., Jiang, Q., & Shao, Y. (2009). Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). Journal of Environmental Sciences, 21(9), 1214–1220. https://doi.org/10.1016/S1001-0742(08)62406-7
Huu, T. N., Giau, T. T. N., Ngan, P. N., Van, T. T. B., & Khuong, N. Q. (2022). Potential of Phosphorus Solubilizing Purple Non-sulfur Bacteria Isolated from Acid Sulfate Soil in Improving Soil Property, Nutrient Uptake, and Yield of Pineapple (Ananas comosus L. Merrill) under Acidic Stress. Applied and Environmental Soil Science, 2022. 1–13. https://doi.org/10.1155/2022/8693479
Indonesian Central Agency of Statistics. (2019). Statistik Tanaman Sayuran dan Buah-buahan Semusim. Badan Pusat Statistik Indonesia.
Kang, S.-M., Adhikari, A., Khan, M. A., Kwon, E.-H., Park, Y.-S., & Lee, I.-J. (2021). Influence of the Rhizobacterium Rhodobacter sphaeroides KE149 and Biochar on Waterlogging Stress Tolerance in Glycine max L. Environments, 8(9), 94. https://doi.org/10.3390/environments8090094
Kantachote, D., Nunkaew, T., Kantha, T., & Chaiprapat, S. (2016). Biofertilizers from Rhodopseudomonas palustris strains to enhance rice yields and reduce methane emissions. Applied Soil Ecology, 100. 154–161. https://doi.org/10.1016/j.apsoil.2015.12.015
Kantha, T., Kantachote, D., & Klongdee, N. (2015). Potential of biofertilizers from selected Rhodopseudomonas palustris strains to assist rice (Oryza sativa L. subsp. Indica) growth under salt stress and to reduce greenhouse gas emissions. Annals of Microbiology, 65(4), 2109–2118. https://doi.org/10.1007/s13213-015-1049-6
Khuong, N. Q., Kantachote, D., Nookongbut, P., Onthong, J., Thanh Xuan, L. N., & Sukhoom, A. (2020). Mechanisms of acid-resistant Rhodopseudomonas palustris strains to ameliorate acidic stress and promote plant growth. Biocatalysis and Agricultural Biotechnology, 24. 101520. https://doi.org/10.1016/j.bcab.2020.101520
Khuong, N. Q., Thuc, L. V., Giang, C. T., Xuan, L. N. T., Thu, L. T. M., Isao, A., & Jun-Ichi, S. (2023). Improvement of Nutrient Uptake, Yield of Black Sesame (Sesamum indicum L.), and Alluvial Soil Fertility in Dyke by Spent Rice Straw from Mushroom Cultivation as Biofertilizer Containing Potent Strains of Rhodopseudomonas palustris. The Scientific World Journal, 2023. 1–14. https://doi.org/10.1155/2023/1954632
Kishorekumar, R., Bulle, M., Wany, A., & Gupta, K. J. (2020). An Overview of Important Enzymes Involved in Nitrogen Assimilation of Plants. In K. J. Gupta (Ed.), Nitrogen Metabolism in Plants (Vol. 2057. pp. 1–13). Springer New York. https://doi.org/10.1007/978-1-4939-9790-9_1
Lee, S.-K., Lur, H.-S., & Liu, C.-T. (2021). From Lab to Farm: Elucidating the Beneficial Roles of Photosynthetic Bacteria in Sustainable Agriculture. Microorganisms, 9(12), 2453. https://doi.org/10.3390/microorganisms9122453
Naik, K., Mishra, S., Srichandan, H., Singh, P. K., & Choudhary, A. (2020). Microbial formulation and growth of cereals, pulses, oilseeds and vegetable crops. Sustainable Environment Research, 30(1), 10. https://doi.org/10.1186/s42834-020-00051-x
Nookongbut, P., Kantachote, D., Khuong, N. Q., Sukhoom, A., Tantirungkij, M., & Limtong, S. (2019). Selection of Acid-Resistant Purple Non-sulfur Bacteria from Peat Swamp Forests to Apply as Biofertilizers and Biocontrol Agents. Journal of Soil Science and Plant Nutrition, 19(3), 488–500. https://doi.org/10.1007/s42729-019-00044-9
Nookongbut, P., Kantachote, D., Khuong, N. Q., & Tantirungkij, M. (2020). The biocontrol potential of acid-resistant Rhodopseudomonas palustris KTSSR54 and its exopolymeric substances against rice fungal pathogens to enhance rice growth and yield. Biological Control, 150. 104354. https://doi.org/10.1016/j.biocontrol.2020.104354
Nunkaew, T., Kantachote, D., Kanzaki, H., Nitoda, T., & Ritchie, R. J. (2014). Effects of 5-aminolevulinic acid (ALA)-containing supernatants from selected Rhodopseudomonas palustris strains on rice growth under NaCl stress, with mediating effects on chlorophyll, photosynthetic electron transport and antioxidative enzymes. Electronic Journal of Biotechnology, 17(1), 19–26. https://doi.org/10.1016/j.ejbt.2013.12.004
Panunggul, V. B. (2023). Respon pertumbuhan dan hasil tanaman kailan terhadap pupuk urea dan bakteri fotosintesis. Agrika: Jurnal Ilmu-Ilmu Pertanian, 17(1), 119–132. https://doi.org/10.31328/ja.v17i1.4645
Pratiwi, A., Maghfoer, M. D., Widaryanto, E., & Aini, N. (2024). Effects of different timings of drought stress and plant growth-promoting rhizobacteria inoculation on the photosynthetic characteristics of shallot (Allium ascalonicum L.). Journal of Ecological Engineering, 25(5), 230–243. https://doi.org/10.12911/22998993/186357
Rahmawati, A. A. N. (2022). Varietas Bawang Merah Unggul Spesifik dari Daerah Istimewa Yogyakarta. Buletin Teknologi & Inovasi Pertanian, 1(1), 9–12.
Sakpirom, J., Kantachote, D., Nunkaew, T., & Khan, E. (2017). Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Research in Microbiology, 168(3), 266–275. https://doi.org/10.1016/j.resmic.2016.12.001
Su, P., Zhang, D., Zhang, Z., Chen, A., Hamid, M. R., Li, C., Du, J., Cheng, J., Tan, X., Zhen, L., Zhai, Z., Tang, W., Chen, J., Zhou, X., & Liu, Y. (2019). Characterization of Rhodopseudomonas palustris population dynamics on tobacco phyllosphere and induction of plant resistance to Tobacco mosaic virus. Microbial Biotechnology, 12(6), 1453–1463. https://doi.org/10.1111/1751-7915.13486
Surachat, K., Kantachote, D., Deachamag, P., & Wonglapsuwan, M. (2022). In silico genomic analysis of Rhodopseudomonas palustris strains revealed potential biocontrol agents and crop yield enhancers. Biological Control, 176. 105085. https://doi.org/10.1016/j.biocontrol.2022.105085
Takeuchi, M. H., & Numata, K. (2019). Marine Purple Photosynthetic Bacteria as Sustainable Microbial Production Hosts. Frontiers in Bioengineering and Biotechnology, 7. 258. https://doi.org/10.3389/fbioe.2019.00258
Talaat, N. B. (2019). Effective microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production. Scientia Horticulturae, 250. 254–265. https://doi.org/10.1016/j.scienta.2019.02.052
Triyono, Fauzan, M., Mu’awanah, J., & Sedek, M. (2021). Production factor efficiency of shallot farming in Pati, Central Java, Indonesia. E3S Web of Conferences, 316(1), 02036. https://doi.org/10.1051/e3sconf/202131602036
Tuhuteru, S., Sulistyaningsih, E., & Wibowo, A. (2017). Effects of plant growth promoting rhizobacteria (PGPR) on growth and yield of shallot in sandy coastal land. Ilmu Pertanian (Agricultural Science), 1(3), 105. https://doi.org/10.22146/ipas.16349
Wong, W.-T., Tseng, C.-H., Hsu, S.-H., Lur, H.-S., Mo, C.-W., Huang, C.-N., Hsu, S.-C., Lee, K.-T., & Liu, C.-T. (2014). Promoting Effects of a Single Rhodopseudomonas palustris Inoculant on Plant Growth by Brassica rapa chinensis under Low Fertilizer Input. Microbes and Environments, 29(3), 303–313. https://doi.org/10.1264/jsme2.ME14056
Wu, Y., Liao, W., Dawuda, M. M., Hu, L., & Yu, J. (2019). 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: A review. Plant Growth Regulation, 87(2), 357–374. https://doi.org/10.1007/s10725-018-0463-8
Xu, J., Feng, Y., Wang, Y., Luo, X., Tang, J., & Lin, X. (2016). The foliar spray of Rhodopseudomonas palustris grown under Stevia residue extract promotes plant growth via changing soil microbial community. Journal of Soils and Sediments, 16(3), 916–923. https://doi.org/10.1007/s11368-015-1269-1
Yen, K. S., Sundar, L. S., & Chao, Y.-Y. (2022). Foliar Application of Rhodopseudomonas palustris Enhances the Rice Crop Growth and Yield under Field Conditions. Plants, 11(19), 2452. https://doi.org/10.3390/plants11192452
Yu, J., Moon, S.-K., Kim, Y.-H., & Min, J. (2022). Isoprene production by Rhodobacter sphaeroides and its antimicrobial activity. Research in Microbiology, 173(6–7), 103938. https://doi.org/10.1016/j.resmic.2022.103938
Copyright (c) 2024 Yovi Avianto, Wisnu Adhi Susila
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Agronomi Tanaman Tropika (JUATIKA) agree to the following terms:
Authors retain copyright and grant the Jurnal Agronomi Tanaman Tropika (JUATIKA) right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially) with an acknowledgment of the work's authorship and initial publication in Jurnal Agronomi Tanaman Tropika (JUATIKA).
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Agronomi Tanaman Tropika (JUATIKA). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.