Potential Compounds in Indonesian Herbal Plants using Computational Screening for Inhibitory Activity Against Chikungunya Virus Envelope Protein E2

  • Inda Setyawati
  • Fatma Ayyalla Fadhilla Ilyas
  • Mikael Kristiadi
  • Aprijal Ghiyas Setiawan
Keywords: Antiviral drug discovery, chikungunya virus, envelope protein E2, Indonesian herbal compounds, molecular docking, molecular dynamics simulations

Abstract

Chikungunya disease, marked by fever, headaches, and severe joint pain, is a significant global health issue, especially in tropical and subtropical regions. Despite its prevalence, there is no specific vaccine or drug for Chikungunya, prompting the need for antiviral drug research. This study targets the envelope protein E2 of the Chikungunya virus (CHIKV) using computational methods to identify potential inhibitory compounds from Indonesian herbal compounds. The CHIKV E2 receptor model was constructed using AlphaFold 2, and molecular docking analyses were performed with herbal compounds from the HerbalDB database using AutoDock-GPU. Molecular dynamics (MD) simulations with Gromacs further assessed ligand-protein interactions. Druggable pocket analysis identified 17 potential ligand-binding regions, with Pocket 0 selected for virtual screening. The virtual screening of 3768 herbal compounds identified 23-Hydroxy-mangiferonic acid (a free energy value of -9.0 kcal/mol) as the most promising candidate due to its high binding affinity and stability in molecular dynamics simulations for 250 ns. MD simulations confirmed the stability and specificity of its interactions with key residues in the targeted pocket. The findings suggest that 23-Hydroxy-mangiferonic acid is a promising therapeutic agent against CHIKV, highlighting the effectiveness of computational methods in antiviral drug discovery. This research lays the groundwork for future experimental validation and development of treatments for Chikungunya infections

Downloads

Download data is not yet available.

References

Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001.

Afreen, N.; Deeba, F.; Naqvi, I.; Shareef, M.; Ahmed, A.; Broor, S.; Parveen, S. Molecular Investigation of 2013 Dengue Fever Outbreak from Delhi, India. PLoS Curr 2014. https://doi.org/10.1371/currents.outbreaks.0411252a8b82aa933f6540abb54a855f.

Amaral, J. K.; Bilsborrow, J. B.; Schoen, R. T. Brief Report: The Disability of Chronic Chikungunya Arthritis. Clin Rheumatol 2019, 38 (7), 2011–2014. https://doi.org/10.1007/s10067-019-04529-x.

Battini, L.; Fidalgo, D. M.; Álvarez, D. E.; Bollini, M. Discovery of a Potent and Selective Chikungunya Virus Envelope Protein Inhibitor through Computer-Aided Drug Design. ACS Infect Dis 2021, 7 (6), 1503–1518. https://doi.org/10.1021/acsinfecdis.0c00915.

Forli, S.; Huey, R.; Pique, M. E.; Sanner, M. F.; Goodsell, D. S.; Olson, A. J. Computational Protein–Ligand Docking and Virtual Drug Screening with the AutoDock Suite. Nat Protoc 2016, 11 (5), 905–919. https://doi.org/10.1038/nprot.2016.051.

Holmes, A. C.; Basore, K.; Fremont, D. H.; Diamond, M. S. A Molecular Understanding of Alphavirus Entry. PLoS Pathog 2020, 16 (10), e1008876. https://doi.org/10.1371/journal.ppat.1008876.

Huang, J.; MacKerell, A. D. CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR Data. J Comput Chem 2013, 34 (25), 2135–2145. https://doi.org/10.1002/jcc.23354.

Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus Drug Development for COVID-19. Acta Pharmacol Sin 2020, 41 (9), 1141–1149. https://doi.org/10.1038/s41401-020-0485-4.

Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.

Liang, L.; Ahamed, A.; Ge, L.; Fu, X.; Lisak, G. Advances in Antiviral Material Development. Chempluschem 2020, 85 (9), 2105–2128. https://doi.org/10.1002/cplu.202000460.

Majewski, M.; Barril, X. Structural Stability Predicts the Binding Mode of Protein–Ligand Complexes. Journal of Chemical Information and Modeling. 2020. https://doi.org/10.1021/acs.jcim.9b01062.

Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat Methods 2022, 19 (6), 679–682. https://doi.org/10.1038/s41592-022-01488-1.

Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. Software News and Updates AutoDock4 and AutoDockTools4 : Automated Docking with Selective Receptor Flexibility. 2009. https://doi.org/10.1002/jcc.

Nugroho, A. E.; Matsumoto, M.; Sotozono, Y.; Kaneda, T.; Hadi, A. H. A.; Morita, H. Cycloartane Triterpenoids With Anti-Melanin Deposition Activity. Natural Product Communications. 2018. https://doi.org/10.1177/1934578x1801300706.

O’Driscoll, M.; Salje, H.; Chang, A. Y.; Watson, H. Arthralgia Resolution Rate Following Chikungunya Virus Infection. International Journal of Infectious Diseases 2021, 112, 1–7. https://doi.org/10.1016/j.ijid.2021.08.066.

Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit. Bioinformatics 2013, 29 (7), 845–854. https://doi.org/10.1093/bioinformatics/btt055.

Smith, G. R.; Sternberg, M. J. E. Prediction of Protein–Protein Interactions by Docking Methods. Current Opinion in Structural Biology. 2002. https://doi.org/10.1016/s0959-440x(02)00285-3.

Van Duijl-Richter, M.; Hoornweg, T.; Rodenhuis-Zybert, I.; Smit, J. Early Events in Chikungunya Virus Infection—From Virus CellBinding to Membrane Fusion. Viruses 2015, 7 (7), 3647–3674. https://doi.org/10.3390/v7072792.

Volkamer, A.; Kühn, D.; Grombacher, T.; Rippmann, F.; Rarey, M. Combining Global and Local Measures for Structure-Based Druggability Predictions. Journal of Chemical Information and Modeling. 2012. https://doi.org/10.1021/ci200454v

Wahid, B.; Ali, A.; Rafique, S.; Idrees, M. Global Expansion of Chikungunya Virus: Mapping the 64-Year History. International Journal of Infectious Diseases 2017, 58, 69–76. https://doi.org/10.1016/j.ijid.2017.03.006.

Published
2024-05-31
Abstract viewed = 5 times
PDF downloaded = 6 times