Review - Soil Sulfur Dynamics and Their Role in Plant Growth and Development

Keywords: Distribution, Mineralization, sulphate, Transformation

Abstract

Sulfur (S) is an essential nutrient for plant growth, crucial for protein synthesis, enzyme function, and chlorophyll production. In acidic tropical soils, sulfur dynamics are influenced by various factors, particularly soil acidity, organic matter content, and microbial activity. This review explores the sources, transformation, availability, and cycling of Sulfur in acidic tropical soils, emphasizing its role in agriculture and ecosystem sustainability, focusing on the sources, transformation, and factors affecting sulfur availability. The weathering of minerals, especially from sulfate and sulfide minerals, contributes to the long-term supply of Sulfur in soil ecosystems. Microbial activity and soil temperature play key roles in the mineralization process of Sulfur. Plants' sulfate absorption is affected by soil conditions, including pH, texture, and organic matter content. Data indicate that acidic conditions can inhibit microbial activity, reducing sulfur availability. These findings suggest that the importance of managing sulfur availability to enhance agricultural yields in acidic tropical soils and the potential for developing microbe-based fertilizers to improve nutrient absorption efficiency by plants

Downloads

Download data is not yet available.

References

Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H., Hand, J., Klimont, Z., Galy-Lacaux, C., Lehmann, C. M. B., Myhre, C. L., Myhre, G., Olivié, D., Sato, K., Quaas, J., Rao, P. S. P., Schulz, M., Shindell, D., Skeie, R. B., … Xu, X. (2019). Global and regional trends of atmospheric sulfur. Scientific Reports, 9(1), 953. https://doi.org/10.1038/s41598-018-37304-0

Agustina, D., Prasetyo, J., Siregar, H., & Lutfi, M. (2020). Screening dan isolasi mikroba pengurai H₂S untuk purifikasi biogas dari POME pada PLT biogas [Screening and isolation of H₂S reducing microbes for biogas purification from POME on biogas power plant]. Jurnal Ilmiah Teknik Kimia, 75(4), 75–81.

Aisyah, A., Suastika, I. W., Suntari, R., Tanah, J., & Pertanian, F. (2015). Pengaruh aplikasi beberapa pupuk sulfur terhadap residu, serapan, serta produksi tanaman jagung di Mollisol Jonggol, Bogor, Jawa Barat. Jurnal Tanah Dan Sumberdaya Lahan, 2(1), 93–101. Retrieved from http://jtsl.ub.ac.id

Alemu, M., Gemeda, L., & Shiferaw, D. (2023). Effect of sulfur fertilizer on yield and quality attributes of bread wheat (Triticum aestivum L.) varieties. Agricultural Research, 10, 20.

Anggria, L., Kasno, A., & Rostaman, T. (2019). Release of sulfur on paddy soil condition. Agric, 31(1), 67–74. https://doi.org/10.24246/agric.2019.v31.i1.p67-74

Banerjee, M. R., & Chapman, S. J. (1996). The significance of microbial biomass sulfur in soil. Biology and Fertility of Soils, 22(1-2), 116–125. https://doi.org/10.1007/BF00384442

Beegle, D. B. (2001). Soil acidity and aglime. In Agronomy Facts 3 (5th ed.). Macmillan.

Behera, S. K., Rao, B. N., Suresh, K., & Manoja, K. (2016). Soil nutrient status and leaf nutrient norms in oil palm (Elaeis guineensis Jacq.) plantations grown on the southern plateau of India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 86(3), 691–697. https://doi.org/10.1007/s40011-015-0508-y

Benish, S. E., Bash, J. O., Foley, K. M., Appel, K. W., Hogrefe, C., Gilliam, R., & Pouliot, G. (2022). Long-term regional trends of nitrogen and sulfur deposition in the United States from 2002 to 2017. Atmospheric Chemistry and Physics, 22(19), 12749–12767. https://doi.org/10.5194/acp-22-12749-2022

Biswas, H., Rattan, R. K., Datta, S. P., & Singh, A. K. (2003). Adsorption and translocation of sulfur in some tropical acid soils. Journal of Plant Nutrition and Soil Science, 166(4), 519–524. https://doi.org/10.1002/jpln.200320245

Briat, J.-F., Gojon, A., Plassard, C., Rouached, H., & Lemaire, G. (2020). Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. European Journal of Agronomy, 116, 126069. https://doi.org/10.1016/j.eja.2020.126069

Chan, K. X., Phua, S. Y., & Van Breusegem, F. (2019). Secondary sulfur metabolism in cellular signalling and oxidative stress responses. Journal of Experimental Botany, 70(16), 4237–4250. https://doi.org/10.1093/jxb/erz119

Chaudhary, S., Sindhu, S. S., Dhanker, R., & Kumari, A. (2023). Microbes-mediated sulfur cycling in soil: Impact on soil fertility, crop production, and environmental sustainability. Microbiological Research, 271, 127340. https://doi.org/10.1016/j.micres.2023.127340

Chen, G., Lu, Q., Bai, J., Wen, L., Zhang, G., Wang, W., Wang, C., & Liu, Z. (2022). Organic sulfur mineralization in surface soils from coastal wetlands with different flooding periods affected by flow-sediment regulation in the Yellow River Delta, China. Catena, 215, 106343. https://doi.org/10.1016/j.catena.2022.106343

Darmawan, A. (2021). Identifikasi sebaran sulfur pada permukaan area Jawa Barat menggunakan metode band ratio citra Landsat 8. Prosiding Seminar Nasional Aplikasi Sains & Teknologi, 71–79. Retrieved from https://magma.vsi.esdm.go.id

David, M. B., Mitchell, M. J., & Nakas, J. P. (1982). Organic and inorganic sulfur constituents of a forest soil and their relationship to microbial activity. Soil Science Society of America Journal, 46(4), 847–852. https://doi.org/10.2136/sssaj1982.03615995004600040036x

Egesel, C. Ö., Gül, M. K., & Kahrıman, F. (2009). Changes in yield and seed quality traits in rapeseed genotypes by sulfur fertilization. European Food Research and Technology, 229(3), 505–513. https://doi.org/10.1007/s00217-009-1067-3

Eriksen, J. (2009). Soil sulfur cycling in temperate agricultural systems. In Advances in Agronomy (Vol. 102, pp. 55–89). Academic Press. https://doi.org/10.1016/S0065-2113(09)01002-5

Feinberg, A., Stenke, A., Peter, T., Hinckley, E. L. S., Driscoll, C. T., & Winkel, L. H. E. (2021). Reductions in the deposition of sulfur and selenium to agricultural soils pose risk of future nutrient deficiencies. Communications Earth and Environment, 2(1), 1–8. https://doi.org/10.1038/s43247-021-00172-0

Franzen, D., & Grant, C. A. (2015). Sulfur response based on crop, source, and landscape position. Sulfur: A Missing Link between Soils, Crops, and Nutrition, 105–116. https://doi.org/10.2134/agronmonogr50.c7

Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889–892. https://doi.org/10.1126/science.1136674

Gerendás, J., Donough, C. R., Oberthür, T., & Abdurro-, G. (2014). Sulphur nutrition of oil palm in Indonesia – The neglected macronutrient. Oil Palm Bulletin, 67(November), 5–10.

Germida, J. J., & Janzen, H. H. (1993). Factors affecting the oxidation of elemental sulfur in soils. Fertilizer Research, 35(1), 101–114. https://doi.org/10.1007/BF00750224

Ghosh, D., Murmu, S., Adhikary, S., Mukherjee, A. K., Mal, S., Khanam, R., Pawar, A., Pharande, A. L., More, N. B., & Mandal, B. (2022). Sulphur flow in soil–plant system with long-term agricultural practices on a Vertisol. European Journal of Soil Science, 73(6), e13318. https://doi.org/10.1111/ejss.13318

Gilbert, S. M., Clarkson, D. T., Cambridge, M., Lambers, H., & Hawkesford, M. J. (1997). SO₄²⁻ deprivation has an early effect on the content of ribulose-1,5-bisphosphate carboxylase/oxygenase and photosynthesis in young leaves of wheat. Plant Physiology, 115(3), 1231–1239. https://doi.org/10.1104/pp.115.3.1231

Gourav, Sankhyan, N. K., Kumar, P., Sharma, G. D., & Sharma, N. (2021). Critical limits of sulfur in relation to the growth and development of French bean (Phaseolus vulgaris L.) and cauliflower (Brassica oleracea var. botrytis) in acidic soils of Northwestern Himalayas. Communications in Soil Science and Plant Analysis, 52(19), 2280–2288. https://doi.org/10.1080/00103624.2021.1921194

Hanifah, B. N., Suntari, R., & Baswarsiati, B. (2020). Pengaruh aplikasi pupuk sulfur dan jumlah siung terhadap pertumbuhan dan produksi bawang putih (Allium sativum L.) serta residu sulfur di Inceptisol Karangploso. Jurnal Tanah dan Sumberdaya Lahan, 8(1), 43–50. https://doi.org/10.21776/ub.jtsl.2021.008.1.6

Idly, N. S., & Susilawati, S. (2023). Jurnal Ilmu Pertanian Agronitas Vol. 5 No. 2 Edisi Oktober 2023. Jurnal Ilmu Pertanian Agronitas, 5(2), 372–382.

Itanna, F. (2005). Sulfur distribution in five Ethiopian Rift Valley soils under humid and semi-arid climate. Journal of Arid Environments, 62(4), 597–612. https://doi.org/10.1016/j.jaridenv.2005.01.010

Jaggi, R. C., Aulakh, M. S., & Sharma, R. (1999). Temperature effects on soil organic sulfur mineralization and elemental sulfur oxidation in subtropical soils of varying pH. Nutrient Cycling in Agroecosystems, 54(2), 175–182. https://doi.org/10.1023/A:1009770919296

Jamal, A., Moon, Y. S., & Abdin, M. Z. (2010). Sulphur—a general overview and interaction with nitrogen. Australian Journal of Crop Science, 4(7), 523–529.

Juliarni, J., Wawan, W., & Zul, D. (2021). Population of bacteria in soil Dystrudepts under oil palm in the application of organic mulch and earthworm. Jurnal Agronomi Tanaman Tropika (Juatika, 3(1), 43–51. https://doi.org/10.36378/juatika.v3i1.415

Kalala, A., Amuri, N., & Semoka, J. (2016). Sulphur and zinc fertilization effects on growth and yield response of rice. International Journal of Plant & Soil Science, 11(5), 1–12. https://doi.org/10.9734/ijpss/2016/25567

Khattab, M., Shehata, A., Abou, E., Saadate, E., & Al-hasni, K. (2016). Effect of glycine, methionine and tryptophan on the vegetative growth, flowering and corms production of gladiolus plant (Gladiolus spp.). Alexandria Science Exchange Journal: An International Quarterly Journal of Science Agricultural Environments, 37(October-December), 647–659. https://doi.org/10.21608/asejaiqjsae.2016.2543

Kour, S., Arora, S., Jalali, V. K., & Mondal, A. K. (2010). Soil sulfur forms in relation to physical and chemical properties of midhill soils of North India. Communications in Soil Science and Plant Analysis, 41(3), 277–289. https://doi.org/10.1080/00103620903460799

Kumar, G., & Ranjan, N. (2012). Sulphate sorption–desorption characteristics of lateritic soils of West Bengal, India. Associate Professor, Institute of Agriculture, Visva-Bharati, Sriniketan, 167–176.

Kumar, S. S., Kumar, S. S., & Mohapatra, T. (2021). Interaction between macro‐ and micro-nutrients in plants. Frontiers in Plant Science, 12(May). https://doi.org/10.3389/fpls.2021.665583

Lavanya, K. R., Kadalli, G. G., Patil, S., Jayanthi, T., Naveen, D. V., & Channabasavegowda, R. (2019). Sulphur fractionation studies in soils of long-term fertilizer experiment under finger millet – maize cropping sequence. International Journal of Current Microbiology and Applied Sciences, 8(09), 1334–1345. https://doi.org/10.20546/ijcmas.2019.809.153

Li, Q., Gao, Y., & Yang, A. (2020). Sulfur homeostasis in plants. International Journal of Molecular Sciences, 21(23), 1–16. https://doi.org/10.3390/ijms21238926

Likus-Cieślik, J., & Pietrzykowski, M. (2021). Sulfur contamination and environmental effects: A case study of current SO₂ industrial emission by biomonitoring and regional post-mining hot-spots. The Open Biotechnology Journal, 15(1), 82–96. https://doi.org/10.2174/1874070702115010082

Liu, C., Wei, H., Liu, Q., Tao, Y., Xie, Y., & Zhou, C. (2023). Transformation of sulfur in the sediment–water system of the sewage pipeline under different hydraulic retention time. Environmental Pollution, 337, 122596. https://doi.org/10.1016/j.envpol.2023.122596

Lunde, C., Zygadlo, A., Simonsen, H. T., Nielsen, P. L., Blennow, A., & Haldrup, A. (2008). Sulfur starvation in rice: The effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiologia Plantarum, 134(3), 508–521. https://doi.org/10.1111/j.1399-3054.2008.01159.x

Ma, Y., Zhang, H., Xue, Y., Gao, Y., Qian, X., Dai, H., Liu, K., Li, Q., & Li, Z. (2021). Effect of sulfur fertilizer on summer maize grain yield and soil water utilization under different irrigation patterns from anthesis to maturity. Agricultural Water Management, 250, 106828. https://doi.org/10.1016/j.agwat.2021.106828

Marschner, P. (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Academic Press.

Maya Sari, M. Siregar, A., Walida, H., Ainy Dalimunthe, B., & Hariyati Adam, D. (2024). Study of soil biological properties in producing plants and immature plants of oil palm in Aek Nabara Utara plantation PTPN III. Jurnal Agronomi Tanaman Tropika (Juatika), 6(1), 64–71. https://doi.org/10.36378/juatika.v6i1.3412

Mayer, B., Prietzel, J., & Krouse, H. R. (2001). The influence of sulfur deposition rates on sulfate retention patterns and mechanisms in aerated forest soils. Applied Geochemistry, 16(9–10), 1003–1019. https://doi.org/10.1016/S0883-2927(01)00010-5

Michalovicz, L., Dick, W. A., Tormena, C. A., Müller, M. M. L., & Cervi, E. C. (2021). Temporal trends of sulfur levels in soils of northwest Ohio (USA) between 2002 and 2014. Land Degradation & Development, 32(2), 573–582. https://doi.org/10.1002/ldr.3745

Minato, E. A., Brignoli, F. M., Neto, M. E., Besen, M. R., Cassim, B. M. A. R., Lima, R. S., Tormena, C. A., Inoue, T. T., & Batista, M. A. (2023). Lime and gypsum application to low-acidity soils: Changes in soil chemical properties, residual lime content, and crop agronomic performance. Soil and Tillage Research, 234, 105860. https://doi.org/10.1016/j.still.2023.105860

Muhammad, H., Sabiham, S., Rachim, A., & Adijuwana, H. (2005). The rate of S-element transformation to sulfate on three kinds of soils with and without the addition of organic matter. Jurnal Ilmu Tanah Dan Lingkungan, 7(1), 15–21. https://doi.org/10.29244/jitl.7.1.15-21

Muscolo, A., Marra, F., Canino, F., Maffia, A., Mallamaci, C., & Russo, M. (2022). Growth, nutritional quality, and antioxidant capacity of Lactuca sativa grown on two different soils with sulfur-based fertilizer, organic, and chemical fertilizers. Scientia Horticulturae, 305, 111421. https://doi.org/10.1016/j.scienta.2022.111421

Nakai, Y., & Maruyama-Nakashita, A. (2020). Biosynthesis of sulfur-containing small biomolecules in plants. International Journal of Molecular Sciences, 21(10), 1–13. https://doi.org/10.3390/ijms21103470

Narayan, O. P., Kumar, P., Yadav, B., Dua, M., & Johri, A. K. (2022). Sulfur nutrition and its role in plant growth and development. Plant Signaling & Behavior, 17(2), 2030082. https://doi.org/10.1080/15592324.2022.2030082

Padhan, D., Shivaraj, D., Doddagenigera Nagaraja, A., Rout, P. P., Babu, C. M., Aurade, R., Velayudhan, S., & Babulal. (2023). Changes in soil sulphur fractions as influenced by nutrient management practices in mulberry. Land, 12(6). https://doi.org/10.3390/land12061160

Poisson, E., Trouverie, J., Brunel-Muguet, S., Akmouche, Y., Pontet, C., Pinochet, X., & Avice, J.-C. (2019). Seed yield components and seed quality of Brassica napus are impacted by sulfur fertilization and its interactions with nitrogen fertilization. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00458

Prasad, A., Jale, R. K. V. K., Kumari, V., Rakesh, A. P., & Prasad, R. P. (2020). Soil sulphur status and response of crops to sulphur application in Indian soils: A review. Journal of Pharmacognosy and Phytochemistry, 9(3), 1406–1410. www.phytojournal.com

Puspitasari, D., Pramono, H., & Oedjijono, O. (2014). Identifikasi bakteri pengoksidasi besi dan sulfur berdasarkan gen 16S rRNA dari lahan tambang timah di Belitung. Scripta Biologica, 1(1), 10–16. https://doi.org/10.20884/1.sb.2014.1.1.12

Ray, S., & Banerjee, A. (2016). Structural stability, transitions, and interactions within SoxYZCD-thiosulphate from Sulfurimonas denitrificans: An in silico molecular outlook for maintaining environmental sulphur cycle. Journal of Biophysics, 2016(1), 8683713. https://doi.org/10.1155/2016/8683713

Reheis, M. C., & Kihl, R. (1995). Dust deposition in southern Nevada and California, 1984–1989: Relations to climate, source area, and source lithology. Journal of Geophysical Research, 100(D5), 8893–8918. https://doi.org/10.1029/94JD03245

Sabir, M., Hanafi, M. M., & Hakeem, K. R. (2015). Sulfur nutrition of oil palm (Elaeis guineensis) for enhancing oil yield in tropics. In K. R. Hakeem (Ed.), Crop Production and Global Environmental Issues (pp. 349–368). Springer International Publishing. https://doi.org/10.1007/978-3-319-23162-4_15

Scherer, H. W. (2001). Sulphur in crop production. European Journal of Agronomy, 14(2), 81–111. https://doi.org/10.1016/S1161-0301(00)00082-4

Schoenau, J. J., & Malhi, S. S. (2008). Sulfur forms and cycling processes in soil and their relationship to sulfur fertility. In Sulfur: A Missing Link Between Soils, Crops, and Nutrition (pp. 1–10). https://doi.org/10.2134/agronmonogr50.c1

Sharma, A., & Sankhyan, N. K. (2020). Sorption studies on sulphur in cultivated soils of Himachal Pradesh. International Journal of Current Microbiology and Applied Sciences, 9(8), 3376–3384. https://doi.org/10.20546/ijcmas.2020.908.390

Sharma, R. K., Cox, M. S., Oglesby, C., & Dhillon, J. S. (2024). Revisiting the role of sulfur in crop production: A narrative review. Journal of Agriculture and Food Research, 15, 101013. https://doi.org/10.1016/j.jafr.2024.101013

Shelke, P. N., Adsule, R. N., Ranshur, N. J., & Todmal, S. M. (2007). Determination of critical level of sulphur for soybean (Glycine max) in inceptisol and effect of its graded levels on nutrient uptake. Journal of Soil and Water Conservation, 2, 55–59.

Shukla, A. K., Behera, S. K., Basumatary, A., Sarangthem, I., Mishra, R., Dutta, S., Sikaniya, Y., Sikarwar, A., Shukla, V., & Datta, S. P. (2024). PCA and fuzzy clustering-based delineation of soil nutrient (S, B, Zn, Mn, Fe, and Cu) management zones of sub-tropical northeastern India for precision nutrient management. Journal of Environmental Management, 365, 121511. https://doi.org/10.1016/j.jenvman.2024.121511

Singh, G., Ramanathan, A. L., & Prasad, M. B. K. (2005). Nutrient cycling in mangrove ecosystem: A brief overview. International Journal of Ecology and Environmental Sciences, 31(3), 231–244.

Srinivasarao, C., Ganeshamurthy, A. N., Ali, M., Singh, R. N., & Singh, K. K. (2004). Sulphur fractions, distribution, and their relationships with soil properties in different soil types of major pulse-growing regions of India. Communications in Soil Science and Plant Analysis, 35(19–20), 2757–2769. https://doi.org/10.1081/CSS-200036435

Turbidimetry, B., Luiza Rodrigues Molina Rossete, A., Albertino Bendassolli, J., & Cesar Ocheuze Trivelin, P. (2008). Organic sulfur oxidation to sulfate in soil samples for total sulfur determination by turbidimetry. Revista Brasileira de Ciência do Solo, 32(3).

Uren, N. C. (1987). Cycles of soil: Carbon, nitrogen, sulfur, micronutrients. In Soil Biology and Biochemistry, 19(5), 653. https://doi.org/10.1016/0038-0717(87)90113-1

Wang, H., & Zhang, L. (2023). Trends of inorganic sulfur and nitrogen species at an urban site in western Canada (2004–2018). Environmental Pollution, 333, 122079. https://doi.org/10.1016/j.envpol.2023.122079

Wang, T., Zhong, G., Liu, H. H., Xia, Y., & Xun, L. (2023). A common mechanism for rapid transfer of zero-valent sulfur between microbial cells. Science of the Total Environment, 891(December 2022), 164461. https://doi.org/10.1016/j.scitotenv.2023.164461

Wang, Y., Bai, D., Yang, X., Zhang, Y., & Luo, X. (2023). Soil sulfur cycle bacteria and metabolites affected by soil depth and afforestation conditions in high-sulfur coal mining areas. Applied Soil Ecology, 185, 104802. https://doi.org/10.1016/j.apsoil.2022.104802

Warmada, I. W., & Titisari, A. D. (2015). Agromineralogi (Mineralogi untuk Ilmu Pertanian) (Issue 2). https://warmada.staff.ugm.ac.id/Buku/agromineral.pdf

Wright, D. E. (1962). Amino acid uptake by plant roots. Archives of Biochemistry and Biophysics, 97(1), 174–180. https://doi.org/10.1016/0003-9861(62)90061-9

Zhang, Q., Chen, H.-F., Huang, D.-Y., Guo, X.-B., Xu, C., Zhu, H.-H., Li, B., Liu, T.-T., Feng, R.-W., & Zhu, Q.-H. (2022). Sulfur fertilization integrated with soil redox conditions reduces Cadmium (Cd) accumulation in rice through microbial induced Cd immobilization. Science of the Total Environment, 824, 153868. https://doi.org/10.1016/j.scitotenv.2022.153868

Zhao, F. J., Hawkesford, M. J., & McGrath, S. P. (1999). Sulphur assimilation and effects on yield and quality of Triticum aestivum (wheat). Journal of Cereal Science, 30(1), 1–17. https://doi.org/10.1006/jcrs.1998.0241

Published
2024-09-01
Abstract viewed = 0 times
PDF downloaded = 0 times