Agronomic Response of Various Rice Varieties Using Nano Priming ZnO Treatment on Seeds to Drought Stress

  • Anita Natalia Universitas Muhammadiyah Palembang
  • Iin Siti Aminah Universitas Muhammadiyah Palembang
  • Neni Marlina Universitas Muhammadiyah Palembang
Keywords: Rice Varieties, Rice, Seed Germination, ZnO NPs

Abstract

Rice (Oryza sativa L.) is a staple food crop that is being promoted as part of efforts to enhance national food security. The utilization of dry land in Indonesia is one mechanism that supports this food security initiative. Seed priming treatments have been shown to improve plant tolerance to drought stress conditions. This adaptation study aims to investigate the differences in seed viability among several rice varieties subjected to different concentrations of ZnO nanopriming, as well as the performance of selected seeds grown under drought stress conditions during the vegetative phase of the plants. The first phase of the research involved seed screening and variety selection, accompanied by seed priming treatments. The experimental design employed was a Factorial Randomized Block Design, with the first factor being ZnO concentrations of 0 ppm, 10 ppm, 15 ppm, and 20 ppm. The second factor involved the selection of four rice varieties: Ciherang, Inpari 32 HDB, Mekongga, and the expired Ciherang. The second phase of the research built upon the first phase, utilizing the best rice seeds identified from the screening results along with the most effective priming treatment. These seeds were subjected to drought stress treatments (without watering), which included 0 HTS, 5 HTS, 7 HTS, and 14 HTS. The results indicated that the seed priming treatment with ZnO nanoparticles (NPs) significantly increased the germination percentage of rice seeds across all varieties, with the optimal treatment combinations being 30 ppm for the Ciherang variety and 100 ppm for the Mekongga variety. Under drought stress conditions, the Ciherang variety at 30 ppm exhibited the best adaptation up to 14 HTS. Overall, the application of nano-priming with ZnO NPs enhanced seed germination and promoted plant growth.

Downloads

Download data is not yet available.

References

Chand Mali, S., Raj, S., & Trivedi, R. (2020). Nanotechnology: A novel approach to enhance crop productivity. Biochemistry and Biophysics Reports, 24, 100821. https://doi.org/10.1016/j.bbrep.2020.100821

Dimkpa, O., Singh, U., Bindraban, P. S., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2019). Version of record. Science of the Total Environment. https://www.sciencedirect.com/science/article/pii/S0048969719329651

Donia, D. T., & Carbone, M. (2023). Seed priming with zinc oxide nanoparticles to enhance crop tolerance to environmental stresses. International Journal of Molecular Sciences, 24(24). https://doi.org/10.3390/ijms242417612

Hossain, M. A., Bhattacharjee, S., Armin, S. M., Qian, P., Xin, W., Li, H. Y., Burritt, D. J., Fujita, M., & Tran, L. S. P. (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Frontiers in Plant Science, 6, 1–19. https://doi.org/10.3389/fpls.2015.00420

Lutfiyani, N. A., Ekawati, F., & Suliansyah, I. (2025). Growth and yield of Bujang Marantau rice variety (Oryza sativa L.) on peat land due to application of fly ash. Agro, 7(2), 1–6.

Mahakham, W., Sarmah, A. K., Maensiri, S., & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7(1), 1–21. https://doi.org/10.1038/s41598-017-08669-5

Mazhar, M. W., Ishtiaq, M., Hussain, I., Parveen, A., Bhatti, K. H., Azeem, M., Thind, S., Ajaib, M., Maqbool, M., Sardar, T., Muzammil, K., & Nasir, N. (2022). Seed nano-priming with zinc oxide nanoparticles in rice mitigates drought and enhances agronomic profile. PLoS ONE, 17(3), 1–18. https://doi.org/10.1371/journal.pone.0264967

Nasrudin, N., & Firmansyah, E. (2020). Respon pertumbuhan vegetatif padi varietas IPB 4S pada kondisi cekaman kekeringan. Agromix, 11(2), 218–226. https://doi.org/10.35891/agx.v11i2.2066

Nawaz, J., Hussain, M., Jabbar, A., Nadeem, G. A., Sajid, M., Subtain, M., & Shabbir, I. (2013). Seed priming: A technique. International Journal of Agriculture and Crop Sciences, 6(20), 1373–1381.

Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., Nile, A., Sun, M., Venkidasamy, B., Xiao, J., & Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture—Recent developments and future perspectives. Journal of Nanobiotechnology, 20(1). https://doi.org/10.1186/s12951-022-01423-8

Nio, S. A., & Lenak, A. A. (2014). Penggulungan daun pada tanaman monokotil saat kekurangan air (Leaf rolling in monocotyledon plants under water deficit). Jurnal Bios Logos, 4(2). https://doi.org/10.35799/jbl.4.2.2014.5539

Pandya, P., Kumar, S., Patil, G., Mankad, M., & Shah, Z. (2024). Impact of ZnO nanopriming on physiological and biochemical traits of wheat (Triticum aestivum L.) seedling. CABI Agriculture and Bioscience, 5(1). https://doi.org/10.1186/s43170-024-00228-z

Puspitaningrum, H., & Salamah, A. (2023). Analisis karakteristik vegetatif dari empat varietas padi dalam perlakuan cekaman kekeringan. Jurnal Ilmu-Ilmu Hayati, 22(1), 11–21.

Ramadhan, N. (2024). The influence of climate change on rice production and cultivation patterns in Indonesia. Jurnal Agronomi Tanaman Tropika (Juatika), 6(1). https://doi.org/10.36378/juatika.v6i1.3374

Rivero, R. M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., & Blumwald, E. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19631–19636. https://doi.org/10.1073/pnas.0709453104

Rizwan, M., Ali, S., Ali, B., Adrees, M., Hussain, A., Zia, M., & Waris, A. A. (2018). [Data not complete – please update this entry.]

Saber, N., Hosary, E., Mabrouk, M., Ghoraba, W., & Hassan, A. (2021). Influence of seed-nanopriming treatment with zinc oxide on growth, nutrient status and gene expression of enzymatic antioxidants in wheat plant. The Egyptian Journal of Experimental Biology (Botany), 17, 1. https://doi.org/10.5455/egyjebb.20210705083704

Salam, A., Afridi, M. S., Javed, M. A., Saleem, A., Hafeez, A., Khan, A. R., Zeeshan, M., Ali, B., Azhar, W., Sumaira, Ulhassan, Z., & Gan, Y. (2022). Nano-priming against abiotic stress: A way forward towards sustainable agriculture. Sustainability (Switzerland), 14(22), 1–24. https://doi.org/10.3390/su142214880

Taghfir, D. B., Anwar, S., & Kristanto, B. A. (2018). Kualitas benih dan pertumbuhan bibit cabai (Capsicum frutescens L.) pada perlakuan suhu dan wadah penyimpanan yang berbeda. Journal of Agro Complex, 2(2), 137. https://doi.org/10.14710/joac.2.2.137-147

Torey, P. C., Nio, S. A., Siahaan, P., & Mambu, S. M. (2014). Karakter morfologi akar sebagai indikator kekurangan air pada padi lokal Superwin (Root-morphological characters as water-deficit indicators in local rice Superwin). Jurnal Bios Logos, 3(2). https://doi.org/10.35799/jbl.3.2.2013.4431

Wu, F., Fang, Q., Yan, S., Pan, L., Tang, X., & Ye, W. (2021). Correction to: Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): Germination, early growth, and arsenic uptake. Environmental Science and Pollution Research, 28(23), 30423–30424. https://doi.org/10.1007/s11356-021-13938-y

Published
2025-05-01
How to Cite
Natalia, A., Aminah, I. S., & Marlina, N. (2025). Agronomic Response of Various Rice Varieties Using Nano Priming ZnO Treatment on Seeds to Drought Stress. JURNAL AGRONOMI TANAMAN TROPIKA (JUATIKA), 7(2), 580 -. https://doi.org/10.36378/juatika.v7i2.4388
Abstract viewed = 0 times
PDF downloaded = 0 times