RANCANGAN CONTINUOUS STIRRED TANK REACTOR UNTUK SINTESIS NANOPARTIKEL WO3

  • Maya Lianawati Universitas Pendidikan Indonesia
  • Asep Bayu Dani Nandiyanto Universitas Pendidikan Indonesia
  • Meli Fiandini Universitas Pendidikan Indonesia
  • Risti Ragadhita Universitas Pendidikan Indonesia
Keywords: Reactor, CSTR, Tungsten oxide

Abstract

This research aim to develop a continuous stirred tank reactor (CSTR) in the meant to produce WO3 nanoparticles. A manual calculations was done using Microsoft Excel. The result obtained CSTR with a tank designed with volume 1301.14 m3 volume, height 1.26 m, and 1.19 designed hydrostatic pressure. The reactor also equipped with 1 stirrer with length 0.23 m and width 0.18 m. This study expected to be useful reference for production of WO3 nanoparticles in industrial scale.

Author Biographies

Maya Lianawati, Universitas Pendidikan Indonesia

Departemen Pendidikan Kimia 

Asep Bayu Dani Nandiyanto, Universitas Pendidikan Indonesia

Departemen Pendidikan Kimia 

Meli Fiandini, Universitas Pendidikan Indonesia

Departemen Pendidikan Kimia 

Risti Ragadhita, Universitas Pendidikan Indonesia

Departemen Pendidikan Kimia 

References

Adhikari, S., Mandal, S., Sarkar, D., Kim, D., & Madras, G. (2017). Applied Surface Science Kinetics and mechanism of dye adsorption on WO3 nanoparticles. Applied Surface Science, 420, 472–482. https://doi.org/10.1016/j.apsusc.2017.05.191
Adhikari, S., & Sarkar, D. (2015). Confined Growth of WO3 for High-Performance Electrochromic Device. Key Engineering Materials, 659, 583–587. https://doi.org/10.4028/www.scientific.net/KEM.659.583
Adhikari, S., Sarkar, D., & Maiti, H. S. (2014). Synthesis and Characterization of WO3 Spherical Nanoparticles and Nanorods. Materials Research Bulletin, 49, 325–330. https://doi.org/10.1016/j.materresbull.2013.08.028
Al Marzouqi, F., Al-balushi, N. A., Kuvarega, A. T., Karthikeyan, S., & Selvaraj, R. (2021). Thermal and hydrothermal synthesis of WO3 nanostructure and its optical and photocatalytic properties for the degradation of Cephalexin and Nizatidine in aqueous solution. Materials Science & Engineering B, 264(July 2020), 114991. https://doi.org/10.1016/j.mseb.2020.114991
Hariharan, V., Gnanavel, B., Sathiyapriya, R., Aroulmoji, V., Hariharan, V., Gnanavel, B., Sathiyapriya, R., Review, V. A. A., Wo, O., Hariharan, V., Gnanavel, B., Sathiyapriya, R., & Aroulmoji, V. (2021). A Review on Tungsten Oxide (WO3) and their Derivatives for Sensor Applications. International Journal of Advanced Science and Engineering, 5, 1163–1168. https://doi.org/10.29294/ijase.5.4.2019.1163-1168
Hu, C. (2021). Reactor design and selection for effective continuous manufacturing of pharmaceuticals. Journal of Flow Chemistry, 11(3), 243–263.
Jeevitha, G., Abhinayaa, R., Mangalaraj, D., & Ponpandian, N. (2018). Journal of Physics and Chemistry of Solids Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. Journal of Physics and Chemistry of Solids, 116, 137–147. https://doi.org/10.1016/j.jpcs.2018.01.021
Jingjing, D. U., Chunyue, S., & Ping, L. I. (2007). Modeling and Control of a Continuous Stirred Tank Reactor Based on a Mixed Logical Dynamical Model. Chin. Journal of Chemistry Engineering, 15(60404018), 533–538.
Kanan, S. M., & Tripp, C. P. (2007). Synthesis, FTIR studies and sensor properties of WO3 powders. Current Opinion in Solid State and Materials Science, 11, 19–27. https://doi.org/10.1016/j.cossms.2007.11.001
Luévano-hipólito, E., Cruz, A. M., Yu, Q. L., & Brouwers, H. J. H. (2014). Precipitation synthesis of WO3 for NOx removal using PEG as template. Ceramics International, 40, 12123–12128. https://doi.org/10.1016/j.ceramint.2014.04.052
Mohamed, F. B., Ali, B. M., & Nageib, R. M. (2020). Synthesis and Characterization of Nanostructured Tungsten Trioxide. 1(1), 49–56.
Sánchez-Martínez, D., Martínez-De La Cruz, A., & López-Cuéllar, E. (2013). Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties. Materials Research Bulletin, 48(2), 691–697. https://doi.org/10.1016/j.materresbull.2012.11.024
Santos, L., Silveira, C. M., Elangovan, E., Neto, J. P., Nunes, D., Pereira, L., Martins, R., Viegas, J., Moura, J. J. G., Todorovic, S., Almeida, M. G., & Fortunato, E. (2016). Synthesis of WO3 nanoparticles for biosensing applications. Sensors and Actuators, B: Chemical, 223, 186–194. https://doi.org/10.1016/j.snb.2015.09.046
Surakasi, R., Rao, Y. S., Sanuj, A. K., Patil, P. P., Jayaganthan, A., & Hechhu, R. (2022). Methylene Blue Dye Photodegradation during Synthesis and Characterization of WO3 Nanoparticles. Adsorption Science & Technology, 2022, 1–10.
Tahir, M. B., Sagir, M., Rafique, M., Abbas, I., Shakil, M., Khan, I., Afsheen, S., Hasan, A., & Ahmad, A. (2017). WO3 Nanostructures-Based Photocatalyst Approach Towards Degradation of RhB Dye. Journal of Inorganic and Organometallic Polymers and Materials. https://doi.org/10.1007/s10904-017-0771-x
Wei, Z., Liu, H., He, H., Jun, Y., & Li, T. (2018). Neuro-Optimal Tracking Control for Continuous Stirred Tank Reactor With Input Constraints. IEEE Transactions on Industrial Informatics, 15(8), 4516–4524. https://doi.org/10.1109/TII.2018.2884214
Yao, Y. R., Ma, R., & Song, X. C. (2013). Hydrothermal Synthesis of tungsten oxide nanoparticles. Applied Mechanics and Materials, 270, 176–179. https://doi.org/10.4028/www.scientific.net/AMM.268-270.176
Yao, Y., Sang, D., Zou, L., & Wang, Q. (2021). A Review on the Properties and Applications of WO3 Nanostructure-Based Optical and Electronic Devices. Nanomaterials, 11, 2136
Published
2023-01-14