RANCANGAN CONTINUOUS STIRRED TANK REACTOR UNTUK SINTESIS NANOPARTIKEL WO3
Abstract
This research aim to develop a continuous stirred tank reactor (CSTR) in the meant to produce WO3 nanoparticles. A manual calculations was done using Microsoft Excel. The result obtained CSTR with a tank designed with volume 1301.14 m3 volume, height 1.26 m, and 1.19 designed hydrostatic pressure. The reactor also equipped with 1 stirrer with length 0.23 m and width 0.18 m. This study expected to be useful reference for production of WO3 nanoparticles in industrial scale.
Downloads
References
Adhikari, S., & Sarkar, D. (2015). Confined Growth of WO3 for High-Performance Electrochromic Device. Key Engineering Materials, 659, 583–587. https://doi.org/10.4028/www.scientific.net/KEM.659.583
Adhikari, S., Sarkar, D., & Maiti, H. S. (2014). Synthesis and Characterization of WO3 Spherical Nanoparticles and Nanorods. Materials Research Bulletin, 49, 325–330. https://doi.org/10.1016/j.materresbull.2013.08.028
Al Marzouqi, F., Al-balushi, N. A., Kuvarega, A. T., Karthikeyan, S., & Selvaraj, R. (2021). Thermal and hydrothermal synthesis of WO3 nanostructure and its optical and photocatalytic properties for the degradation of Cephalexin and Nizatidine in aqueous solution. Materials Science & Engineering B, 264(July 2020), 114991. https://doi.org/10.1016/j.mseb.2020.114991
Hariharan, V., Gnanavel, B., Sathiyapriya, R., Aroulmoji, V., Hariharan, V., Gnanavel, B., Sathiyapriya, R., Review, V. A. A., Wo, O., Hariharan, V., Gnanavel, B., Sathiyapriya, R., & Aroulmoji, V. (2021). A Review on Tungsten Oxide (WO3) and their Derivatives for Sensor Applications. International Journal of Advanced Science and Engineering, 5, 1163–1168. https://doi.org/10.29294/ijase.5.4.2019.1163-1168
Hu, C. (2021). Reactor design and selection for effective continuous manufacturing of pharmaceuticals. Journal of Flow Chemistry, 11(3), 243–263.
Jeevitha, G., Abhinayaa, R., Mangalaraj, D., & Ponpandian, N. (2018). Journal of Physics and Chemistry of Solids Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. Journal of Physics and Chemistry of Solids, 116, 137–147. https://doi.org/10.1016/j.jpcs.2018.01.021
Jingjing, D. U., Chunyue, S., & Ping, L. I. (2007). Modeling and Control of a Continuous Stirred Tank Reactor Based on a Mixed Logical Dynamical Model. Chin. Journal of Chemistry Engineering, 15(60404018), 533–538.
Kanan, S. M., & Tripp, C. P. (2007). Synthesis, FTIR studies and sensor properties of WO3 powders. Current Opinion in Solid State and Materials Science, 11, 19–27. https://doi.org/10.1016/j.cossms.2007.11.001
Luévano-hipólito, E., Cruz, A. M., Yu, Q. L., & Brouwers, H. J. H. (2014). Precipitation synthesis of WO3 for NOx removal using PEG as template. Ceramics International, 40, 12123–12128. https://doi.org/10.1016/j.ceramint.2014.04.052
Mohamed, F. B., Ali, B. M., & Nageib, R. M. (2020). Synthesis and Characterization of Nanostructured Tungsten Trioxide. 1(1), 49–56.
Sánchez-Martínez, D., Martínez-De La Cruz, A., & López-Cuéllar, E. (2013). Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties. Materials Research Bulletin, 48(2), 691–697. https://doi.org/10.1016/j.materresbull.2012.11.024
Santos, L., Silveira, C. M., Elangovan, E., Neto, J. P., Nunes, D., Pereira, L., Martins, R., Viegas, J., Moura, J. J. G., Todorovic, S., Almeida, M. G., & Fortunato, E. (2016). Synthesis of WO3 nanoparticles for biosensing applications. Sensors and Actuators, B: Chemical, 223, 186–194. https://doi.org/10.1016/j.snb.2015.09.046
Surakasi, R., Rao, Y. S., Sanuj, A. K., Patil, P. P., Jayaganthan, A., & Hechhu, R. (2022). Methylene Blue Dye Photodegradation during Synthesis and Characterization of WO3 Nanoparticles. Adsorption Science & Technology, 2022, 1–10.
Tahir, M. B., Sagir, M., Rafique, M., Abbas, I., Shakil, M., Khan, I., Afsheen, S., Hasan, A., & Ahmad, A. (2017). WO3 Nanostructures-Based Photocatalyst Approach Towards Degradation of RhB Dye. Journal of Inorganic and Organometallic Polymers and Materials. https://doi.org/10.1007/s10904-017-0771-x
Wei, Z., Liu, H., He, H., Jun, Y., & Li, T. (2018). Neuro-Optimal Tracking Control for Continuous Stirred Tank Reactor With Input Constraints. IEEE Transactions on Industrial Informatics, 15(8), 4516–4524. https://doi.org/10.1109/TII.2018.2884214
Yao, Y. R., Ma, R., & Song, X. C. (2013). Hydrothermal Synthesis of tungsten oxide nanoparticles. Applied Mechanics and Materials, 270, 176–179. https://doi.org/10.4028/www.scientific.net/AMM.268-270.176
Yao, Y., Sang, D., Zou, L., & Wang, Q. (2021). A Review on the Properties and Applications of WO3 Nanostructure-Based Optical and Electronic Devices. Nanomaterials, 11, 2136