

JURNAL TEKNOLOGI DAN OPEN SOURCE
Vol. 8, No. 1, June 2025, pp. 54~63
e-ISSN: 2622-1659, accredited Four Grade by Kemenristekdikti, Decree No: 152/E/KPT/2023
DOI: 10.36378/jtos.v8i1.4265

Jurnal Teknologi dan Open Source, Vol. 8, No. 1, June 2025: 54 - 63
54

Analysis and Design of Monolithic System Architecture
Migration to Microservices at PT. MALINDO Conceptual

Approach

Ego Oktafanda1, Nofri Wandi Al-Hafiz2, Abdul Latif3, Firman Santosa4
1,4Universitas Rokania, Rokan Hulu, Riau. Indonesia.
2Universitas Islam Kuantan Singingi, Riau, Indonesia.

3Universitas Bina Sarana Informatika, Jakarta. Indonesia

Article Info ABSTRACT

Article history:

Received 04 08, 2025
Revised 04 15, 2025
Accepted 05 16, 2025

 This study analyzes the transition from a monolithic architecture to a
microservices architecture within a corporate environment, specifically at
PT.MALINDO. While the monolithic architecture was once effective, it now
presents several challenges, including maintenance complexity, limited
scalability, and frequent occurrences of deadlocks. The analysis highlights
the growing need for a more adaptive and flexible system to respond to
dynamic business requirements. In this context, a microservices architecture
is proposed as a solution to overcome the limitations of the monolithic
approach. Microservices break down applications into small, independent
services, enabling easier and more efficient development, deployment, and
maintenance. By using components such as an API Gateway and message
brokers like Apache Kafka, inter-service communications can be managed
more effectively, ensuring improved system performance and resilience. The
findings indicate that transitioning to a microservices architecture can
significantly enhance the system's performance, flexibility, and scalability.
The resulting hypothesis suggests that adopting microservices will offer
long-term benefits for PT.MALINDO, particularly in addressing system
complexity and improving responsiveness to evolving business needs.
Recommendations include implementation strategies and change
management practices necessary to ensure a smooth and low-risk transit

Keywords:

Monolith
Microservices
Scalability
Transition

This is an open access article under the CC BY-SA license.

Corresponding Author:

Ego Oktafanda
Department of Computer Science
Universitas Rokania
Riau, Indonesia
Email: egooktafanda1097@gmail.com
© The Author(s) 2025

1. Introduction
In today's rapidly evolving digital era, technology adaptation has become a critical factor for the

sustainability and success of organizations. Monolithic systems, which used to serve as the main foundation
of software development, now face various challenges that can no longer be ignored. Recent research by
Hatma Suryotrisongko (2017) emphasizes this issue and highlights the urgent need to explore alternative
architectures such as microservices to overcome the complexity and limitations of monolithic systems [1].
Enterprise information systems are generally built using a monolithic approach, where the entire application
is packaged into one large unit. As a result, any modification to one part of the code base can have a

 Ego Oktafanda, Nofri Wandi Al-Hafiz, Abdul Latif, Firman Santosa e-ISSN: 2622-1659

Jurnal Teknologi dan Open Source, Vol. 8, No. 1, June 2025: 54 - 63

55

significant impact on other components. However, this traditional approach is increasingly shifting towards a
distributed model, where applications are divided into smaller, specialized modules (high cohesion) that
operate independently (loose coupling). These services are usually developed and integrated using API
(Application Programming Interface) endpoints [2]. PT.MALINDO, a company engaged in logistics,
currently relies on a monolithic system for its operations and data management. One of the main problems
faced in this arrangement is the frequent occurrence of deadlocks and timeouts, which hamper the overall
system response. As systems continue to grow, the complexity of coordination and maintenance also
increases, limiting the company's agility in responding to market changes efficiently. Furthermore,
inadequate monitoring capabilities in many of PT.MALINDO's monolithic systems pose serious risks, as
they make it difficult to detect and resolve problems quickly. In addition, the increasing demand for data
consumption adds further complexity to PT.MALINDO's monolithic architecture, negatively impacting data
processing performance and efficiency. Dependence on a particular technology and limited scalability are
also important issues that need to be addressed. This study aims to explore potential solutions to these
challenges through the adoption of a microservices architecture. By thoroughly understanding the limitations
of monolithic systems and the advantages offered by microservices, PT.MALINDO can make informed
decisions to improve its adaptability, scalability, and operational efficiency. It is hoped that this study will
provide valuable insights and contribute significantly to the sustainable development of modern information
systems within PT.MALINDO.

2. Literature review

Microservices Architecture is a software development approach that structures an application as a
collection of isolated and independently deployable services. This approach addresses many of the challenges
faced by traditional monolithic systems by offering improved flexibility, scalability, and resilience to change.
Microservices architecture is characterized by a network of small, autonomous services that operate
independently and communicate using lightweight protocols such as HTTP (Hypertext Transfer Protocol).
Each service runs in its own process, is built around a distinct business capability, and can be deployed
independently[3]. These services function independently, allowing for development, deployment, and
modification without impacting other services. This modularity enables developers to focus on building
small, well-defined services, thereby enhancing the overall system’s scalability and adaptability.
Microservices have become a popular architectural style for data-driven applications due to their ability to
decompose complex applications into smaller, autonomous services. This decomposition facilitates
scalability, strong isolation, and the specialization of data systems tailored to specific workloads and data
formats [4].

2.1. Advantages of Microservices
a. Scalability

Systems can be scaled horizontally by increasing or decreasing the number of instances of specific
services, allowing them to handle spikes in demand without affecting other parts of the system [5].

b. Development Flexibility
Each service can be developed independently, enabling different development teams to work
simultaneously without interfering with one another. This speeds up development and product release
cycles [6].

c. Resilience to Change
Service isolation allows changes to be made to one service without impacting the entire system. This
supports faster and more efficient adaptation to evolving business requirements [7].

d. Easier Maintenance
Maintenance and debugging are simplified due to each service’s limited scope and functionality.
Enhancements or fixes can be made to individual services without disrupting the entire system [8].

2.2. Disadvantages of Microservices
a. Management Complexity

Despite offering flexibility, managing a large number of distributed services introduces complexity.
Coordinating inter-service communication, monitoring, and version control requires a mature and well-
designed management infrastructure [9].

b. Network Overhead

 Ego Oktafanda, Nofri Wandi Al-Hafiz, Abdul Latif, Firman Santosa e-ISSN: 2622-1659

Jurnal Teknologi dan Open Source, Vol. 8, No. 1, June 2025: 54 - 63
56

Dividing an application into separate services increases the need for inter-service communication over
the network. In large-scale distributed environments, this can lead to significant network overhead and
impact overall system performance [6].

c. Infrastructure Maintenance
Migrating to a microservices architecture may increase infrastructure maintenance requirements.
Managing distributed databases, configuration settings, and error handling becomes more complex and
demands greater technical expertise [10].

d. Cross-Service Transaction Consistency
Handling transactions that span multiple services can be complex. Ensuring data consistency across
these services requires careful design and robust implementation strategies [6].

e. Error Handling Challenges
Failures in one service can impact other parts of the system. Implementing effective error handling and
recovery mechanisms becomes more challenging and requires a well-thought-out strategy [10].

f. Not Suitable for All Applications
Microservices architecture may not be ideal for all types of applications. Smaller or less complex
applications may not benefit significantly from this approach, while the associated management
overhead could outweigh the advantages [6].

3. Research Methodology
In the development of a Microservices Architecture, this study adopts the Software Development

Life Cycle (SDLC) model as the primary research methodology. SDLC is a structured process used for
creating and modifying software systems, encompassing several phases including planning, analysis, design,
implementation, testing, and maintenance. By following the SDLC model, developers can ensure that system
development is carried out in an organized and efficient manner, while meeting both business objectives and
user requirements. For the system design phase, the author recommends the use of the prototyping method,
based on the observation that frequent changes during software development can affect system stability and
lead to significant delays. The prototyping approach is chosen because it involves the evaluation of
prototypes prior to the actual coding stage. From these observations, the author emphasizes that the analysis
phase should be thoroughly completed before proceeding to implementation. The main advantage of the
prototyping method lies in this evaluation stage, where the suitability of the design can be assessed and
validated by stakeholders. If any discrepancies or necessary adjustments are identified, a more focused and
in-depth analysis can be conducted before entering the coding phase. This approach is expected to reduce the
risk of unexpected changes during development. Additionally, the use of the prototyping method offers the
benefit of early user involvement, enabling feedback and collaboration at an early stage of the process.
Therefore, the author argues that this approach can accelerate development and enhance overall efficiency,
while highlighting the importance of thorough analysis before the coding phase begins.

4. Result and Discussion
Functional Requirements Analysis is conducted to understand the capabilities of the system being

designed and how it can address potential issues. This involves an initial phase of observing and elaborating
on business processes, allowing system owners to anticipate application size, user volume, and expected
traffic. In this context, choosing a microservices architecture is considered an appropriate decision.
Microservices architecture decomposes an application into smaller, manageable services, making the system
easier to understand and maintain. Unlike the monolithic approach, which results in a large, complex
application package, microservices offer greater flexibility in development, maintenance, and deployment.
When there is a need to adopt a new technology or programming language, microservices enable smoother

Figure 1 SDLC prototype

 Ego Oktafanda, Nofri Wandi Al-Hafiz, Abdul Latif, Firman Santosa e-ISSN: 2622-1659

Jurnal Teknologi dan Open Source, Vol. 8, No. 1, June 2025: 54 - 63

57

Figure 2 Current System Flow

transitions, as each service can be developed and managed independently. During the maintenance phase, a
dedicated team is often required to manage changes originating from external systems, such as operating
system updates or technology shifts. In applications that utilize microservices architecture, such changes are
easier to implement due to the smaller size and modular nature of the services. This stands in contrast to
monolithic systems, where such updates may require rebuilding the entire application to accommodate new
technologies or programming languages.

4.1. Existing System Architecture
The current monolithic architecture is developed as a single large unit using the Serenity .NET

framework. The server operates on a Windows-based operating system, and all data is stored in a single SQL
Server database. Various components and application modules interact directly with this centralized database
to perform operations such as storing, updating, and retrieving data. The main application functions as the
central coordinator, managing system activities and ensuring data integrity across all modules. Other
modules—such as user management, transaction processing, and reporting—are also directly connected to
the same database, relying on the stored data to support operational tasks. This creates a high level of
interdependency among components, where a change in one part of the system can have widespread impacts
on others.

As shown in Figure 2, the current monolithic system relies on a single central database shared by all
applications. Both the main application and the API client interact directly with the primary database (DB),
which then replicates data to a secondary database (DB Replication). A job scheduler manages the replication
process to ensure the data in the primary DB is regularly updated in the replicated DB. From the replicated
DB, data is distributed to two different databases: MySQL and PostgreSQL (PG), each serving different
application needs. MySQL is used to provide data to a dashboard application, while PostgreSQL supports
other auxiliary applications. This architecture places a substantial load on the primary database, as all data
requests and replication tasks pass through a single centralized point. This setup highlights a significant
limitation of monolithic architecture, particularly at scale: the reliance on a single database creates a
performance bottleneck, which negatively impacts the overall efficiency and responsiveness of the system.

4.2. Proposed System Architecture
This architecture emphasizes a modular and isolated design, comprising four distinct layers that

support the development of independent services. By adopting the microservices approach, the system is
expected to be more responsive to change, offer greater scalability, and accelerate the development process.
The design planning also encourages a thorough consideration of how each microservice interacts within the
ecosystem, ensuring smooth and coherent integration across the entire system. The use of an API Gateway,
service containers, and a message broker (Apache Kafka) plays a key role in facilitating efficient
communication and data flow between components. With this design, the proposed architecture aims to
maximize efficiency, enhance system resilience, and enable faster adaptation to evolving business
requirements and technological advancements in the future.

The proposed system architecture is structured into several layers, as illustrated in Figure 3.

 Ego Oktafanda, Nofri Wandi Al-Hafiz, Abdul Latif, Firman Santosa e-ISSN: 2622-1659

Jurnal Teknologi dan Open Source, Vol. 8, No. 1, June 2025: 54 - 63
58

Figure 3 Proposed System Architecture

4.2.1. Frontend Layer

The separation between the user interface layer (frontend) and business logic has become an
increasingly adopted architectural approach in modern system development. Various studies have shown that
this separation not only improves software development efficiency but also supports the principles of
modularity and scalability [11]. Within microservices-based architectures, the frontend plays a vital role as
the visual interface for accessing distributed backend services, allowing users to interact with complex
functionalities through a simplified and focused interface. From a technical standpoint, isolating the frontend
layer enables developers to apply user-centered design principles without being burdened by the complexities
of backend data flows. This separation is further supported by the use of API Gateways and Single Sign-On
(SSO) mechanisms, which consolidate access control across multiple backend services through a unified
entry point. Research in system complexity management suggests that this layered architecture not only
simplifies debugging and testing but also enhances development agility by allowing teams to work in parallel
across different layers [12]. Furthermore, the use of decentralized frontends aligned with service domains
such as Operational FE, Commercial FE, and others reflects the adoption of domain-driven design principles.
This approach is well-suited for large-scale, evolving systems, where the presentation layer can be tailored to
the specific business logic of each domain. As such, the frontend becomes more than just a visual interface; it
serves as a strategic component that supports digital transformation, promotes efficient development
practices, and delivers a more intuitive user experience.

4.2.2. API Gateway and Single Sign-On (SSO) Layer

The implementation of Kong Gateway and a Single Sign-On (SSO) system plays a crucial role in
establishing a secure, efficient, and integrated system architecture. These two components are specifically
utilized to simplify user interactions across multiple services while enhancing access security. Kong
Gateway, selected as the API gateway solution in this study, acts as the central controller for communication
traffic among services. Its functionalities extend beyond simple request routing to include data aggregation,
load management, and consistent application of authentication and authorization policies across the system.
Meanwhile, the integration of an SSO system within the system design enables users to authenticate once and
gain access to multiple services without repeated logins. This approach significantly improves user
experience by reducing login friction, while also strengthening security through centralized credential
management. It minimizes the risks associated with multiple logins and ensures policy consistency
throughout the system. As a result, the system becomes both more secure and user-friendly two essential
attributes for the development of complex and distributed digital services. Overall, the adoption of Kong
Gateway and SSO within the scope of this research demonstrates a significant impact on service management
efficiency, system security enhancement, and seamless service integration. These technologies contribute to
the establishment of centralized access control, modular system architecture, and standardized workflows.

 Ego Oktafanda, Nofri Wandi Al-Hafiz, Abdul Latif, Firman Santosa e-ISSN: 2622-1659

Jurnal Teknologi dan Open Source, Vol. 8, No. 1, June 2025: 54 - 63

59

This affirms that choosing the right infrastructure at the integration layer can greatly influence the system’s
performance, scalability, and reliability in the context of this research.

4.2.3. Service Layer

The service layer represents an architectural structure that segments applications into independent
yet interconnected components, all linked through an API Gateway. In this approach, a single application is
decomposed into multiple standalone modules, each managed by a separate development team or division.
These independent services are designed with clear responsibilities and are capable of functioning
autonomously, without requiring direct dependencies on other modules. The API Gateway plays a critical
role in this architecture, serving as a centralized entry point that handles requests and responses across the
distributed services. It acts as a unified interface that simplifies and streamlines communication between
various services, enabling efficient and well-coordinated data exchange. By managing the integration layer
through a standardized gateway, the system reduces complexity, enhances operational efficiency, and
maintains better control over inter-service interactions. This architectural setup enhances scalability,
flexibility, and maintainability, as each service can be developed, deployed, and maintained independently. It
fosters an adaptive environment that allows development teams to respond quickly and effectively to changes
within dynamic business contexts. While the first layer the frontend layer typically follows specific
architectural recommendations, the service layer retains the flexibility to adopt the Model-View-Controller
(MVC) paradigm when suitable. Even without strictly adhering to frontend-layer prescriptions, the service
layer can still support MVC principles. This allows for a clear separation of concerns among data
management (Model), presentation logic (View), and control flow (Controller). Ultimately, the service layer
provides an open environment where developers can apply effective design patterns such as MVC based on
the specific needs and characteristics of each service. This flexibility supports customized development
approaches without relying on the frontend layer as a prerequisite.

4.2.4. Layer Message Broker
Apache Kafka serves as a critical communication intermediary within microservices architecture,

enabling efficient and structured interaction among various services and systems. Its primary role revolves
around facilitating service intercommunication—allowing distinct services such as Operational Service,
Commercial Service, Billing Service, Reporting Service, and Dashboard Service to exchange messages
without direct dependencies on one another. Kafka supports the principle of loose coupling, where services
are designed to be independent, making it easier to manage, scale, and evolve the system. Each service can
produce or consume data through Kafka without needing to know the internal workings of the other services
it communicates with. This separation enhances modularity and simplifies maintenance. One of Kafka’s most
powerful capabilities is enabling real-time data streaming. It allows the seamless flow of data from various
service sources to target destinations whether those be live operational systems or long-term storage like data
warehouses. This real-time transmission ensures that insights and actions based on data can occur with
minimal delay, increasing responsiveness and system efficiency. Kafka also contributes significantly to
system scalability and resilience. It can handle high volumes of data while ensuring reliable message
delivery, even in the event of service failures. This fault-tolerant design supports consistent and dependable
system behavior, which is crucial for distributed architectures. Moreover, Kafka helps decouple data
producers and consumers, eliminating the need for direct service-to-service connections. This abstraction
layer not only simplifies communication but also makes the development and alignment of services more
flexible and agile. As a message queue manager, Kafka guarantees that messages are delivered in an orderly
and secure manner between services. It orchestrates the flow of data, ensuring that each message reaches its
intended destination correctly and reliably. Finally, Kafka facilitates integration with legacy systems. It
allows data from traditional applications and external clients to be routed through Kafka into modern,
containerized services—without the need for major modifications to existing infrastructure. This ensures
smooth interoperability between legacy and modern components. In summary, Apache Kafka is a
cornerstone of microservices architecture. It empowers efficient communication, accelerates data processing,
and enhances system modularity, flexibility, and scalability.

4.2.5. Layer Datawarehouse
Although considered an optional layer, the Data Warehouse Layer plays a crucial role in enhancing

data analysis processes and supporting data replication. This layer serves as a strategic component that helps
minimize the risk of data loss when unexpected service disruptions occur. By integrating a Data Warehouse
Layer, data can be accessed and analyzed more efficiently, enabling faster and more informed decision-

 Ego Oktafanda, Nofri Wandi Al-Hafiz, Abdul Latif, Firman Santosa e-ISSN: 2622-1659

Jurnal Teknologi dan Open Source, Vol. 8, No. 1, June 2025: 54 - 63
60

Figure 4 Architectural Fragment

making. Additionally, the data replication functionality provided by this layer contributes to system
reliability. In the event of a service failure, the replicated data remains available, ensuring the continuity and
integrity of critical information. Therefore, while it is not mandatory, the Data Warehouse Layer offers a
strategic advantage in managing complex services by optimizing data workflows and providing a safety net
for data protection.

Figure 4. illustrates a simplified breakdown of the proposed system architecture, showing the flow
of processes beginning from the smallest components. In this diagram, the User Interface (UI) or Front-End
(FE) interacts directly with an API Gateway, which serves as the entry point for managing incoming requests
and routing them to the Back-End (BE). The back-end communicates with a PostgreSQL (PG) database to
handle core data operations. In parallel, RabbitMQ, acting as a message broker, manages asynchronous
communication across different system components. This ensures that the system remains scalable and
responsive, even under high-load conditions. The data generated and processed through this architecture is
then stored in the Data Warehouse. This centralized storage supports further analytics and acts as a reliable
backup mechanism, contributing to the robustness and efficiency of the overall system.

4.3. Description of Technology Used

Table 1 description

Items Description Total
OS Server Linux Ubuntu 3
Container management kubernates 3
Container Isolasi docker 21
Service Aplication services 8
Frontend ReactJs (Typescript)

Backend NodeJs

Database Postgresql & Mysql

Message Broker Apache Kafka 1
Api gateway Kong Gateway

Datawarehouse & Replikasi Postgresql

developer 2 frontend / 2 backend 4

This section presents a list of technologies implemented in this study, covering the core components
that support the system architecture based on microservices. The selection of these technologies is guided by
the system’s requirements for scalability, efficient service management, as well as security and reliability in
inter-component communication. The system is hosted on three Linux Ubuntu servers, which offer a stable
and highly compatible environment for container-based development tools. For container orchestration,

 Ego Oktafanda, Nofri Wandi Al-Hafiz, Abdul Latif, Firman Santosa e-ISSN: 2622-1659

Jurnal Teknologi dan Open Source, Vol. 8, No. 1, June 2025: 54 - 63

61

Kubernetes is employed, enabling centralized and automated deployment and management of services.
Docker is used to isolate services, with a total of 21 active containers, each representing various microservice
components within the system. The core services are implemented as part of the application services layer,
consisting of eight units, including frontend, backend, and service containers. The frontend interface is
developed using ReactJS with TypeScript, while the backend utilizes NodeJS, supporting high-performance
and asynchronous processing. The database layer combines PostgreSQL and MySQL to enable replication
and support data analytics requirements. To facilitate asynchronous communication between services,
Apache Kafka is used as the message broker. Kong Gateway handles API request management and integrates
seamlessly with the Single Sign-On (SSO) system for unified authentication. For long-term data storage and
replication, PostgreSQL serves as the foundation of the data warehousing solution. The development team
consists of two frontend and two backend developers, making a total of four active developers responsible for
building and maintaining the system.

5. Results, Conclusion, and Recommendation
The results of the research conducted are based on the processes of design, implementation, and

evaluation of a microservices architecture system in the case study of PT. MALINDO. The analysis was
carried out to test the previously established hypotheses, evaluate the impact on system performance and
efficiency, and assess the success of the architectural transformation from a monolithic structure to
microservices. Conclusions were drawn from the findings obtained, and recommendations are provided as a
guide for the next steps in system development.

5.1. Hypothesis

This study is based on the hypothesis that adopting a microservices architecture can address the
limitations of the current monolithic system used by PT.MALINDO, particularly in terms of performance,
scalability, and development flexibility. The key hypotheses tested include:
a. That by implementing containerization using Docker, each service can be isolated and configured with

dedicated resources, thus preventing system timeouts and performance degradation across services even
when hosted on the same physical server.

b. That the use of open-source tools and platforms including ReactJS, NodeJS, Kong Gateway, Apache
Kafka, PostgreSQL, and Kubernetes—not only promotes flexibility and modularity but also offers
economic benefits due to the availability of extensive libraries, plugins, and strong community support.

c. That the separation of the frontend, backend, and service logic layers enables more focused and
structured development and maintenance processes, which in turn simplifies debugging and scaling
efforts.

5.2. Findings and Conclusion

Based on the architectural design, simulation outcomes, and supporting literature, this research
concludes that transitioning to a microservices architecture offers substantial advantages over a monolithic
approach, especially in the context of PT.MALINDO's operational needs. Key findings include:
a. The decomposition of services into independent units successfully mitigated previous bottlenecks and

potential deadlocks encountered in the monolithic system.
b. With container-based deployment and orchestration, individual services can now be developed, tested,

and deployed independently without disrupting overall system stability.
c. The integration of Kong Gateway enables centralized and secure API request management, while the

inclusion of a Single Sign-On (SSO) system enhances the user experience by providing seamless and
consistent access control.

d. The adoption of Apache Kafka significantly improves asynchronous service communication,
particularly in handling transactional data and replication workflows.

Development processes benefited from specialized, domain-focused teams, allowing for more effective
division of tasks and clearer alignment with business logic across services.
Overall, the microservices approach has proven to enhance system resilience, development efficiency,
integration ease, and service scalability all of which are essential in supporting the digital transformation
goals of the organization.

5.3. Recommendations

 Ego Oktafanda, Nofri Wandi Al-Hafiz, Abdul Latif, Firman Santosa e-ISSN: 2622-1659

Jurnal Teknologi dan Open Source, Vol. 8, No. 1, June 2025: 54 - 63
62

Based on the findings of this research, it is recommended that the migration to microservices be
carried out gradually and strategically, taking into consideration the current infrastructure and the readiness
of internal resources. The following strategic suggestions are proposed:
a. Conduct a comprehensive evaluation of existing infrastructure and align it with microservices

requirements, particularly in terms of container orchestration, message brokering, and data
synchronization.

b. Establish domain-specific development teams and invest in upskilling them with technical training on
tools such as Docker, Kubernetes, and Kong Gateway.

c. Implement a DevSecOps strategy to ensure security, automation, and long-term sustainability across
development and deployment pipelines.

d. Adopt a robust observability framework, including real-time monitoring, centralized logging, and
distributed tracing, to gain deeper operational insights.

e. Ensure active stakeholder involvement and foster cross-functional team collaboration, as successful
migration depends not only on technology but also on organizational culture and change management.

With a comprehensive and consistent approach, the migration to a microservices architecture can serve as a
strong foundation for the digital continuity and long-term success of PT.MALINDO in today’s fast-evolving
business environment.

References

[1] H. Suryotrisongko, “Arsitektur microservice untuk resiliensi sistem informasi,” SISFO, vol. 6, no. 2,
pp. 6, 2017.

[2] G. Munawar and A. Hodijah, “Analisis model arsitektur microservice pada sistem informasi DPLK,”
Sinkron: Jurnal dan Penelitian Teknik Informatika, vol. 3, no. 1, pp. 232–238, 2018.

[3] M. G. de Almeida and E. D. Canedo, “Authentication and authorization in microservices architecture:
A systematic literature review,” Applied Sciences, vol. 12, no. 6, pp. 3023, 2022.

[4] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, and M. Kalinowski, “Data management in
microservices: State of the practice, challenges, and research directions,” arXiv preprint
arXiv:2103.00170, 2021.

[5] M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and
Maintainable Systems, O’Reilly Media, 2017.

[6] S. Newman, Building Microservices: Designing Fine-Grained Systems, 2nd ed., O’Reilly Media,
2021.

[7] M. Nygard, Release It!: Design and Deploy Production-Ready Software, 2nd ed., Pragmatic
Bookshelf, 2018.

[8] O. Greevy, S. Ducasse, and T. Girba, “Analyzing software evolution through feature views,” Journal
of Software Maintenance and Evolution: Research and Practice, vol. 18, no. 6, pp. 425–456, 2005.

[9] C. Richardson, Microservices Patterns: With Examples in Java, Simon and Schuster, 2018.
[10] V. F. Pacheco, Microservice Patterns and Best Practices: Explore Patterns Like CQRS and Event

Sourcing to Create Scalable, Maintainable, and Testable Microservices, Packt Publishing, 2018.
[11] M. Fowler, “Microservices,” MartinFowler.com, 2014. [Online]. Available:

https://martinfowler.com/articles/microservices.html
[12] S. Newman, Building Microservices, O’Reilly Media, 2021.
[13] Nofri Wandi Al-Hafiz, Helpi Nopriandi, and Harianja, “Design of Rainfall Intensity Measuring

Instrument Using IoT-Based Microcontroller”, JTOS, vol. 7, no. 2, pp. 202 - 211, Dec. 2024.
[14] N. W. Al-Hafiz and H. Harianja, “Design of an Internet of Things-Based automatic cat feeding control

device (IoT)”, Mandiri, vol. 13, no. 1, pp. 161–169, Jul. 2024.
[15] PutriD. and Al-HafizN., “SISTEM INFORMASI SURAT KETERANGAN GANTI RUGI TANAH

PADA KECAMATAN KUANTAN TENGAH MENGGUNAKAN WEBGIS”, Biner : Jurnal Ilmiah
Informatika dan Komputer, vol. 2, no. 2, pp. 112-121, Jul. 2023.

[16] H. Harianja, N. W. Al-Hafiz, and J. Jasri, “Data Analysis of Informatics Engineering Students of
Islamic University of Kuantan Singingi”, JTOS, vol. 6, no. 1, pp. 23 - 30, Jan. 2023.

 Ego Oktafanda, Nofri Wandi Al-Hafiz, Abdul Latif, Firman Santosa e-ISSN: 2622-1659

Jurnal Teknologi dan Open Source, Vol. 8, No. 1, June 2025: 54 - 63

63

[17] Siregar, M., and N. Al-Hafiz. "Design of Cloud Computer to Support Independent Information
System Servers Universitas Islam Kuantan Singingi." Journal of Information System Research
(JOSH) 3.2 (2022)

[18] A. Apri Denta, H. Nopriandi, and E. Erlinda, “Information System Design Realization and
Performance Achievements of the Manpower Office of Kuantan Singingi District”, JTOS, vol. 7, no.
1, pp. 01 - 09, Nov. 2024.

[19] A. AP Putra, E. Erlinda, and M. Yusfahmi, “Sales System in the Endocell Mobile Phone Business
Using the CRM (Customer Relationship Management) Method) in Kompe Berangin Village, Cerenti
District”, JTOS, vol. 7, no. 1, pp. 10 - 21, Nov. 2024.

[20] D. Setiawan, F. Haswan, and J. Jasri, “Design of School Bell Scheduling Application Based on
Arduino Uno on MTs Babussalam Simandolak”, JTOS, vol. 7, no. 1, pp. 22 - 30, Jul. 2024.

[21] D. Juniarti, A. Aprizal, and S. Chairani, “Information System for Analyzing Disease Trends in the
Region Cerenti Health UPTD”, JTOS, vol. 7, no. 1, pp. 31 - 43, Jun. 2024.

[22] F. Restuadi, H. Nopriandi, and A. Aprizal, “ANALISIS QOS JARINGAN INTERNET FAKULTAS
TEKNIK UNIVERSITAS ISLAM KUANTAN SINGINGI MENGGUNAKAN WIRESHARK
4.0.3”, JTOS, vol. 7, no. 1, pp. 44 - 54, Jun. 2024.

[23] J. Jasri and N. W. Al-hafiz, “Designing a mobile-based infaq application markazul quran wassunnah
foundation (MQS)Kuantan Singingi”, J. Teknik Informatika CIT Medicom, vol. 15, no. 5, pp. 247–
254, Nov. 2023.

[24] R. Nazli, A. Amrizal, H. Hendra, and S. Syukriadi, “Modeling User Interface Design E-Business
Applications for Marketing Umkm Products in Payakumbuh City Using Pieces Framework”, JTOS,
vol. 7, no. 2, pp. 55 - 66, Nov. 2024.

[25] Siti Saniah and Mhd. Furqan, “Classification Of Rice Plant Diseases Using K-Nearest Neighbor
Algorithm Based On Hue Saturation Value Color Extraction And Gray Level Co-Occurrence Matrix
Features”, JTOS, vol. 7, no. 2, pp. 212 - 223, Dec. 2024.

