eissn 2656-1727 pissn 2684-785X Hal: 100 – 109 # Test of the Effectiveness of Senduduk Leaf Extract Concentration (Melastoma Malabrhaticum L.) Against Anthracnose Disease in Red Chili Commodities (Capsicum annuum L.) Wahid Hardianto*, Al Muzafri, Yuliana Susanti Program studi Agroteknologi, Fakultas Pertanian, Universitas Pasirpengaraian, Jl.Tuanku Tambusai Jl. Raya Kumu, Rambah, Kec. Rambah Hilir, Kabupaten Rokan Hulu, Riau 28558 *Email: wahidhardianto021@gmail.com #### **ABSTRACT** The disease that causes low chili productivity in Indonesia is anthracnose, anthracnose disease caused by the fungus *Colletotrichum* spp. Efforts to control anthracnose disease are currently still being made using many synthetic pesticides. The use of synthetic pesticides can have a negative impact on the environment. Vegetable functions can be used as another effort to control anthracnose. Plant extracts can be used in anthracnose disease control are Senduduk leaf extracts. This study aims to obtain the concentration of Senduduk plant leaf extract (*Melastoma malabathricum* L) in inhibiting the growth of *Colletotrichum* spp. Research is carried out in the field and laboratory. The design used in this research was a complete randomized design (RAL) with 5 treatments of Senduduk leaf extract, namely K0 = 0%, K1 = 3%, K2 = 6%, K3 = 9%, and K4 = 12%. With 3 repetitions. The results showed that Senduduk leaf extract treatment with a concentration of 12% effective could inhibit the growth of *Colletotrichum capsici* fungus. Keywords: anthracnose, *Melastoma, Malabrhaticum* L, *Capsicum annuum*, *Colletotrichum capsici.* #### 1. INTRODUCTION Red chilies (*Capsicum annuum* L.) hold significant importance in Indonesia, ranking second to legumes. According to BPS data from January to June 2021, Indonesia imported 27,851.98 tons of chilies due to the high demand and insufficient local production. Various factors, such as pest infestations, diseases, and weed growth hinder efforts to boost red chile productivity. Diseases caused by fungi have a high attack level in the field, during transit, and storage. One of the important diseases that attack and are feared in chili plantations is anthracnose. This disease is caused by Colletotrichum spp., which can significantly reduce yields (Gusmarini et al. 2014). Anthracnose disease caused by the fungus Colletotrichum spp. is the main disease in chili plants. Attack of the fungus Colletotrichum spp. in chili plants causes damage to the shoots, stems, leaves, and chili fruit both in the field and after harvest and storage. In Indonesia, anthracnose can cause a reduction in yield of up to 90%, especially in the rainy season (Wakhidah et al., 2021). Apart from reducing the quantity of chili fruit, anthracnose disease also reduces the quality of chilies because it causes a decrease in phenol levels by 16-69%, capsaicin levels by 20-60%, and oleoresin levels by 17-55%. (Kirana et al. 2014). Efforts to manage and prevent anthracnose currently rely on the use of synthetic pesticides. The utilization of synthetic fungicides may have adverse impacts on the environment. Hence, it is imperative to exercise caution when applying synthetic pesticides to mitigate environmental contamination. In order to address this issue, it is essential to explore alternative methods that are both biologically and environmentally sustainable (Imansyah et al., 2013). The leaf extract derived from the Senduduk plant has been identified as a viable botanical pesticide, as evidenced by the research conducted by Chatri et al. (2022). The application of Senduduk leaf extract at varying concentrations has demonstrated significant anti-fungal properties capable of inhibiting the growth of the Fusarium oxysporum fungus. Furthermore, the findings from the study conducted by Laeshita et al. (2022) suggest that concentrated extracts of betel leaves and noni leaves can effectively suppress Colletotrichum spp.'s growth, the anthracnose disease causative agent. According to Hayati (2018), the leaves of the Senduduk plant contain a variety of chemical compounds, such as saponins, flavonoids, tannins, phenolics, steroids, alkaloids. alvcosides, which play a crucial role in eradicating or impeding the growth of microorganisms. #### 2. MATERIALS AND METHOD #### Place and time of research Isolation and identification of the fungus Colletotrichum spp. Macroscopic and microscopic examinations were carried out at the Integrated Agrotechnology Laboratory, Faculty of Agriculture, Pasir Pengaraian University. The research period was carried out from October to December 2023. #### **Materials and Tools** The research utilized Senduduk leaves, Colletotrichum capsici isolate, Potato Dextrose Agar (PDA), ethyl acetate, distilled water, dextrose, tissue, NaOCl, methylene blue, magnesium, amyl alcohol, alcohol, FeCl, hot water, 2 N HCl, acetic acid, sulfuric acid, mayer, aluminum foil, plastic, and filter paper as the materials. Additionally, the tools employed in the study included an autoclave, petri dish, test tube, element tube, microscope, tube needle, cork borer, oven, blender, vacuum rotary evaporator, laminar airflow, micro pipette, busen lamp, dropper pipette, knife, opaque bottle, digital scales, cameras, and stationery. Figure 1. Flow diagram of research implementation #### **Provision of Pathogen Isolates** Anthracnose-symptomatic red chili fruits were obtained from chili plantations in Rambah Baru Village, Rambah Samo Subdistrict, Rokan Hulu Regency. The anthracnose-infected chili fruit was collected using the roaming method and the direct sampling technique. #### **Isolation of Pathogenic Fungi** Chili fruits are washed with running water. The infected or symptomatic parts were then cut into 1x1 cm size. The part taken is between the symptomatic part of the fruit and the healthy part of the fruit. Then, surface sterilization was carried out with 1% NaOCI for approximately 15 seconds, and the mixture was rinsed 3 times with distilled water. In the next stage, the chili pieces were planted on PDA media and incubated for 7 days. After the mycelium grows, it is incubated again for pure culture (Laeshita *et al.*, 2022). #### **Identification of Pathogenic Fungi** identification Fungal includes macroscopic and microscopic characters (Watanabe, 2002). Macroscopic characteristics were obtained by making pure cultures in PDA media. Microscopic characteristics are obtained by making preparations. Next, covered with the colonies covered glass, were observed under a microscope with a magnification of 400 times. #### **Senduduk Leaf Extraction** Senduduk leaves cut, were washed, and dried in the oven at 80°C. The dried sample is crushed using a blender until it is crushed and becomes powder and then ready for extraction. The simplicia powder is put into a container soaked (macerated) temperature with ethyl acetate solvent. After 5 days of maceration, it is filtered, the filtrate is separated, and the dregs are again in a new solution. soaked Maceration was carried out 2 times. The filtrate obtained was then separated from the solvent and extract using a vacuum rotary evaporator at a temperature of 40°C and evaporated so that the solvent was separated from the Senduduk leaf extract (Muzafri et al. 2022). #### Phytochemical Test of Senduduk Plant Leaf Extract Flavonoid Test 10 mg of self-extract, 0.1 mg of magnesium powder, and a 1:1 amyl alcohol solution were put into a test tube. Next, add 4 ml of 96% alcohol. The test is said to be positive if the solution changes color to yellow, orange, or red (Elisa *et al.*, 2018). #### **Tannin & Phenolic Test** The tannin test was carried out by adding 10 mg of Senduduk extract into a test tube and 3 drops of 5% FeCl3. The test is said to be positive if the solution changes color to blackish green. In the phenolic test, 10 mg of extract was put into a test tube, then 3 drops of 1% FeCl3 were added. The test is said to be positive if the solution changes color from green to red (Elisa *et al.*, 2018). #### **Saponin Test** A total of 10 ml of hot water and 0.5 g of Senduduk extract were put into an elemeyer tube, then cooled and homogenized for 10 seconds. If foam forms for no less than 10 minutes, 1 cm to 10 cm high, and if 1 drop of 2 N HCl is added. The foam does not disappear, and the extract contains saponin (Depkes RI, 1995). #### Steroid Test Ekstrak senduduk sebanyak 50-100 mg diletakkan pada plat tetes dan ditambahkan asam asetat sampai semua sampel terendam, dibiarkan 15 menit kemudian 6 tetes larutan dipindahkan ke dalam tabung reaksi dan ditambahkan 2-3 tetes asam sulfat pekat. Perubahan warna yang terjadi diamati dan digunakan sebagai ukuran relatif kandungan steroid dalam sampel. Adanya warna biru. (Sangi et al. 2012). #### **Alkanoid Test** 10 mg of self-extract was put into a test tube, and 1 mL of Mayer's reagent was added. After that, wait a few moments. The test is positive if an orange and yellow precipitate forms. (Elisa *et al.*, 2018). #### Test of the Inhibitory Power of Senduduk Extract Against Pathogenic Fungi The test used a Completely Randomized Design (CRD) with 5 treatments and 3 repetitions so that 15 experimental units were obtained. The experimental design consisted of 5 concentrations of Senduduk leaf extract, i.e., K0 = 0 %, K1 = 3 %, K2= 6 %, K3: 9 %, K4= 12 %. ## RESULT AND DISCUSSION Symptoms of Anthracnose Disease in Red Chilies The results of observations carried out on chili plantations showed that there was an anthracnose attack. Symptoms of anthracnose on red chilies can be seen in Figure 1. Figure 1. Symptoms of Anthracnose Disease on Chili Fruit Chili plants indicated to be infected with anthracnose disease have several characteristics, namely, oval-shaped and black spots on the skin, which gradually enlarge, become slightly watery, then form concave lesions. On the surface of the fruit, it looks like necrosis, as seen in Figure 1. This follows the statement of Harahap et al. (2013) that parts of the fruit or pods show symptoms of anthracnose, namely the presence of black spots on the skin, which will enlarge, merge, and become concave over time, causing the fruit to rot. ### Identification of Anthracnose Disease on Red Chili Fruit The of identifying results anthracnose obtained from red chilies showed that the pathogen was Colletotrichum capsici. Macroscopic and characterization microscopic the pathogenic fungal isolate C. capsici can be seen in Figure 2. Figure 2. Macroscopic and Microscopic of Colletotrichum and capsici fungi (A) Macroscopic view of the fungus Colletotrichum capsici top view, (B) Macroscopic view of the fungus Colletotrichum capsici bottom view (C), Microscopic, (a) Conidia, (b) Microconidia, (c) Conidiophores, (d) Insulated hyphae Based the macroscopic on characterization of fungus, the Colletotrichum capsici has the characteristics of white colonies, a cottonlike texture, a lateral growth direction, and slow growth. Meanwhile, microscopically, the shape of the conidia is like a crescent moon; it does not have a septa and has a hyphae. The book Barnet and Hunter (1972) says that the fungus Colletotrichum capsici has macroconidia shaped like a crescent moon. This is also supported by the statement of Sudirga et al. (2016) that the fungus Colletotrichum capsici has white, pink, orange, and gray colonies. Meanwhile, microscopically, the fungus Colletotrichum capsici has a septate and branched fungal mycelium. The shape of the spores resembles a sickle, and the spores are clear in color and have no septa. ## Phytochemical Content of Senduduk Plant Leaf Extract The results of the phytochemical testing of the Senduduk leaf extract can be seen in Table 1. The phytochemical screening test on the Senduduk leaf extract aims to determine the class of secondary metabolite compounds contained in the extract (Muzafri, 2019). Table 1. Results of Phytochemical Content Analysis of Senduduk Plant Leaf Extract | Compound Type | Result | |---------------|----------| | Flavonoids | + | | Tannin | + | | Phenolic | + | | Saponins | + | | Steroids | + | | Alkaloids | <u>-</u> | Note: (+) = Contain compound type (-) = Not contain a compound type The Senduduk leaf extract underwent an analysis to determine its flavonoid content, and the findings revealed a noticeable shift in color towards orange. Elisa et al. (2018) corroborated this observation by stating that a positive flavonoid test involves a color change to yellow, orange, or red. Furthermore, Komala et al. (2019)explained that flavonoid compounds exhibit anti-fungal properties by impeding mitochondrial electron transport, leading to a decline in mitochondrial membrane potential. This inhibition can be attributed to the hindrance of protons in the respiratory chain, subsequently causing a production reduction in ATP ultimately resulting in the demise of fungal cells. Tannin is said to be positive if the solution changes color to blackish green (Elisa et al. 2018). The tannin compound functions as an inhibitor of chitin synthesis, which formsm cell walls in fungi and damages cell membranes so that fungal growth is hampered. Apart from that, tannins are also lipophilic, so they easily bind to cell walls and cause damage to fungal cell walls (Watson and Preedy, 2007). Phenolics exhibit a positive reaction when the color of the solution transitions from green to red (Elisa et al., 2018). These phenolic compounds act as anti-fungal by interfering with the cytoplasmic membrane, leading to leaks in the cell wall (Ansari et al. 2013). According to the Indonesian Ministry of Health (1995),saponin compounds are deemed positive if foam persists for at least 10 minutes. Saponin itself functions as an anti-fungal agent by disrupting the lipid layer of the cell ultimately membrane. causing breakdown in the permeability of the cell membrane. This disruption hinders the diffusion process of necessary materials or substances for the fungus, resulting in cell swelling and eventual bursting. (Sugianitri, 2011). Steroid showing positive result. The presence of steroid compounds can be determined by observing a color change, specifically a green color, in the Senduduk leaf extract. This observation aligns with the findings of Koleangan et al. (2014), who stated that a change in red or green indicates steroid compounds' presence. Mandduluri (2013) further explains that steroid compounds exhibit anti-fungal properties due to their lipophilic nature, which allows them to disrupt lipid cell membranes, leading to cell lysis and wilting. On the other hand, the alkaloid test yielded negative results, as evidenced by the absence of orange and yellow deposits. This suggests that the formation of the potassium alkaloid complex may not have reached its saturation limit, preventing the formation of a precipitate. Salim et al. (2016) highlight that both internal and external factors influence the phytochemical content of plants. Internal factors include genes, while external factors encompass light, temperature, pH, humidity, nutrients, and altitude. #### **Growth Rate of Colletotrichum Capsici** Observation of the growth rate of the fungus Colletotrichum capsici began 1 day after incubation (HSI) until the fungus filled the petri dish. The results of observations of the growth rate of C. capsici until it filled the petri dish, occurred over 10 days. The growth rate of C. capsici can be seen in Figure 2. Figure 2. Growth of the Mushroom Colletotrichum capsici The C. capsici fungus experienced its highest growth rate on day 2 of HSI. reaching 1.3 cm. Conversely, the lowest growth was observed on day 1 of HSI, attributed to the lag phase in the fungus. Riadi (2016) explains that the lag phase is when fungi acclimate to а environment. The duration of the lag significantly, in funai varies depending on factors such as media composition, pH, temperature, aeration, initial inoculum cell count, and the characteristics physiological of the microorganisms in the previous media. Subsequently, the log/exponential phase ensues, characterized by rapid growth. Genetic traits largely influence the extent of fungal growth during the exponential phase. This phase occurs from day 2 to day 5 of HSI. The stationary phase takes place from days 6 to 10, during which fungal growth stabilizes, balancing with the number of dead cells. Although carbon, an essential energy and nutrient source, may be depleted in the stationary phase, growth continues due to the lysis of dying cells, which serve as a nutritional source (Maier, 2000). #### Inhibitory Power of Senduduk Plant Leaf Extract Against the Fungus Colletotrichum capsici The results of observations of the inhibitory power of Senduduk leaf extract on the Colletotrichum capsici fungus with various concentrations had a real effect, as seen in Table 2. 94e 94.2e K4 66c 78d 85de 88de Percentage of Inhibitory Power Per Day Ρ 1 2 9 10 3 5 6 7 8 K0 0.0a 34b **K**1 20b 48b 48b 43b 40b 38b 33b 24b 16.2b K2 20b 74c 74c 61c 53c 45bc 39b 36c 35c 34c **K**3 20b 74c 89d 74c 64d 45d 82d 86d 82d 54d Table 2. Inhibitory Power Rate of Senduduk Plant Leaf Extract Against Colletotrichum Capsici Fungus Note: Numbers followed by the same letter in the same column are not significantly different based on the BNJ test at the 5% level. P: Treatment, K0 (0% concentration), K1 (3% concentration), K2 (6% concentration), K3 (9% concentration), K4 (12% concentration). 89d According to the results of the variance analysis, it is evident that each treatment exhibits distinct differences from the others. Notably, the K4 treatment displayed the highest inhibitory power, with a remarkable 94.222% inhibitory power on day 10. Consequently, the K4 utilized treatment. which а 12% concentration of Senduduk plant leaves, proved the most effective. The inhibitory power against fungi indicates an active anti-fungal compound in the extract of Senduduk plant leaves against the Colletotrichum sp. fungus. The concentration of the treatment plays a significant role in its effectiveness, as higher concentrations result in larger fungus-free areas. This aligns with the findings of Cahvani et al. (2015), who emphasized the close relationship between concentration and the amount of active ingredients in a formulation. The greater the concentration, the higher the number of active ingredients, leading to a optimal ability to suppress more pathogens. The number of compounds in each concentration directly influences the inhibitory power against fungal growth. concentrations contain active compounds, resulting in stronger inhibitory power. Conversely, lower concentrations have fewer active compounds, weakening inhibitory power (Durairaj, 2009). #### 4. CONCLUSION 92d 91e The cause of anthracnose disease in chili plantations in Rambah Baru Village is Colletotrichum capsici. 93e - 2. Senduduk plant leaf extract contains active compounds, including flavonoids, tannins, phenolics, and steroids. - 3. Senduduk plant leaf extract can inhibit the fungus Colletotrichum capsici's growth, which causes anthracnose disease. - Senduduk plant leaf extract with a concentration of 12% is effective in inhibiting the growth of the fungus Colletotrichum capsici #### REFERENCE Ansari, M.A Anurag, A Fatima, Z & Hameed, S. 2013, Natural *Phenolic Compounds*: A Potential Anti-fungal Agent, 1189–1195. Badan Pusat Statistik. 2022. Statistik Hortikultura 2021. Jakarta: Badan Pusat Statistik. Cahyani, E., Kusmiadi, R., dan Helmi, H. 2015. Uji Efikasi Ekstrak Cair dan Ekstrak Kasar Aseton Daun Merapin dalam Menghambat Pertumbuhan Cendawan Colletotrichum Capsici pada Collethrichum Cabai dan Coccodes pada Tomat. Ekotonia, 1(2): 8-25. - Chatri, M Jumjunidang, J Aini, Z & Suryendra, F. D. 2022. Aktivitas antifungi ekstrak daun *Melastoma Malabathricum* terhadap *Fusarium oxysporum* dan *Sclerotium rolfsii* secara *in vitro*. Jurnal Agrotek Tropika, 10(3), 395 - Depkes RI. 1995. Materia Medika Indonesia. Jilid VI. Jakarta: Departemen Kesehatan Republik Indonesia. Hal. 323-324, 334, 336, 337. - Durairaj, S. Srinivasan. 2009. Uji Daya Anti Bakteri Bawang Putih (*Allium sativum*) Terhadap Bakteri staphylococus aureus, Bakteri E.Coli, Salmonella typhimurium dan Pseudomonas auroginosa Dalam Meningkatkan Kemampuan Pangan. Informatika Pertanian. - Elisa, G Nainggolan, M. & Haro, G 2018 Skrining fitokimia dan isolasi senyawa triterpenoid/steroid dari daun buni (*Antidesma bunius* L.) Spreng. In Talenta Conference Series: Tropical Medicine (TM). - Gusmarini M, Suskandini RD, Nurdin M, Akin HM. 2014. Pengaruh beberapa jenis ekstrak tumbuhan penyakit antraknosa terhadap pada tanaman cabai besar L.) (Capsicum annuum di lapangan. Jurnal Agrotek Tropika. - Harahap, T.F.H L. Lubis dan Hasanuddin. 2013. Efek Virulensi Temperatur terhadap Jamur Colletottrichum gloeosporioides Penz. Sacc. Penyebab Penyakit Antraknosa pada Tanaman Kakao (Theobroma cacao L.). Jurnal Online Agroekoteknologi. - Hayati, Zahratul.2018.Aktivitas Antioksidan Dan Pola Kromatografi Ekstrak Etanol Dan Fraksi Buah Senduduk - (*Melastoma Malabathricum* L.).Fakultas Farmasi Universitas Sumatera Utara :Medan - Imansyah, N. 2013. Daya Antagonisme Beberapa Spesies *Trichoderma* spp. Terhadap *Colletottrichum* spp. pada Cabai. Skripsi. Fakultas Pertanian. Universitas Lambung Mangkurat. Banjarbaru - Kirana, R Kusmana, A Hasyim, dan R Sutarya. 2014. Persilangan cabai merah tahan penyakit antraknosa (*Colletotrichum acutatum*). Jurnal Hortikultura. - Koleangan, H.S.J., Baud, G.S., Sangi, M.S., 2014. Analisis Senyawa Metabolit Sekunder dan Uii Toksisitas Ekstrak Etanol Batang Tanaman Patah Tulang tirucalli L.) dengan Euphorbia Metode Brine Shrimp Lethality (BSLT). Universitas Test Sam Ratulangi. Manado. - Komala, O Yulianita & F. R. Siwi. 2019. Aktivitas Antijamur Ekstrak Etanol 50% dan Etanol 96% Daun Pacar Kuku Lawsonia inermis L. terhadap Trichophyton mentagrophytes. Jurnal Ilmiah Ilmu Dasar dan Lingkungan Hidup. - Laeshita, P Herviana, R. V Siswanto, U & Tidar, U. 2022. Uji efektivitas konsentrasi ekstrak daun sirih dan daun mengkudu terhadap penyakit antraknosa pada komoditas cabai rawit secara *in vitro*. 28, 88–95. - Madduluri, S Rao, K B & Sitaram, B. 2013. In vitro evaluation of five indegenous plants extract againts five bacterial pathogens of human. International Journal of Pharmacy and Phrmaceutical Science, 5(4), 679-684. - Maier, R. M., (2000). Bacterial Growth, In Review of Basic Microbiological Concepts (pp 37–55). Academic Press. - Marbun, R. A. T. (2020). Uji Aktivitas - Ekstrak Daun Pirdot (*Sauraia vulcani Korth*.) Terhadap Pertumbuhan *Candida albicans* Secara *In Vitro*. *Jurnal Bios Logos*, - Muzafri, A. (2019). Uji Aktivitas Antimikroba Ekstrak Andaliman (*Zanthoxylum acanthopodium* DC.) pada *Staphylococus aureus*. Jurnal Sungkai, 7, 122–126. - Α, Edward Bahar, Muzafri Yuliana Susanti, Lufita Nur Alfiah, K. A. S. Ekstraksi Komponen (2022).Antimikroba Daun Salam (Syzygium polyanthum) dan Aplikasinya Pada Produk Ikan Salai Patin (Pangasius sutchi) di Provinsi Riau. Syntax Literate: Jurnal Ilmiah Indonesia p-ISSN: 2541-0849 e- ISSN: 2548-1398. 7(12), 248–253. - Riadi, M., 2016. Pertumbuhan Mikroorganisme. Kaji. Pustaka 1– 47 - Salim, M., Yahya, Y., Sitorus, H., Ni'mah, T. & Marini, M. (2016). Hubungan kandungan hara tanah dengan produksi senyawa metabolit sekunder pada tanaman duku (*Lansium domesticum Corr* var Duku) dan potensinya sebagai larvasida. Jurnal Vektor Penyakit. - Sangi, M. S Momuat, L. I & Kumaunang, M. 2012. Uji toksisitas dan skrining fitokimia tepung gabah pelepah aren (*Arenga pinnata*). Jurnal Ilmiah Sains, 12(2), 127. - Sudirga, S. K. 2016. Isolasi dan identifikasi jamur *Colletotrichum* spp. isolat PCS penyebab penyakit antraknosa pada buah cabai besar (*Capsicum annuum* L.) di Bali. Jurnal Metamorfosa, - Sugianitri, N. K. 2011. Ekstrak Biji Buah Pinang (*Areca catechu* L.) dapat Menghambat Pertumbuhan Koloni *Candida albicans* secara *In Vitro* pada Resin *Akrilik Heat Cured*. Tesis. Program - Pascasarjana Program Studi Ilmu Biomedik Universitas Udayana, Bali. - Wakhidah, N, Kasrina, and H Bustaman. 2021. Keanekaragaman jamur patogen pada tanaman cabai merah (*Capsicum annuum* L.) di dataran rendah. Konservasi Hayati. 17(2): 63–68. - Watson, R. R. dan Preedy, V. R. 2007. Bioactivefoodsin promoting health: probiotics and prebiotics. Academic Press, USA