Conservation of Murraya paniculata: Creating an Ideal Environment at the Biodiversity Conservation Center

  • Mustika Elmi Dayana Universitas Bengkulu
  • Aceng Ruyani Pascasarjana Pendidikan IPA Universitas Bengkulu
  • Melda Nuari Handini Pascasarjana Pendidikan IPA Universitas Bengkulu
  • Hetti Yuliani Pohan Pascasarjana Pendidikan IPA Universitas Bengkulu
Keywords: Conservation, Environmental, Growth, Ideal environment, Murraya paniculata

Abstract

Murraya paniculata (Kemuning) is a highly valuable natural resource due to its ecological, aesthetic, and medicinal properties. However, its sustainability may be jeopardized by insufficient attention to plant conservation and environmental degradation. This study aims to evaluate the effects of various environmental factors on Murraya paniculata’s growth and determine the optimal conditions for its cultivation. The research was conducted using an experimental approach, observing ecological parameters such as soil pH, soil temperature, air temperature, soil moisture, and light intensity and analyzing their relationship to plant growth. The results indicated that Murraya paniculata thrives best in an environment with a soil pH of 6.5, a soil temperature of 29°C, an air temperature of 31°C, soil moisture categorized as humid, and normal light intensity. These ideal conditions promote increased plant height, improved leaf health, and enhanced growth.

Downloads

Download data is not yet available.

References

Barrow, N. J., & Hartemink, A. E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487(1–2), 21–37. https://doi.org/10.1007/s11104-023-05960-5

Chen, Y., Cao, N., Lv, H., Zeng, K., Yuan, J., Guo, X., Zhao, M., Tu, P., & Jiang, Y. (2020). Anti-inflammatory and cytotoxic carbazole alkaloids from Murraya kwangsiensis. Phytochemistry, 170, 112186. https://doi.org/10.1016/j.phytochem.2019.112186

Dosoky, N., Satyal, P., Gautam, T., & Setzer, W. (2016). Composition and biological activities of Murraya paniculata (L.) Jack essential oil from Nepal. Medicines, 3(1), 7. https://doi.org/10.3390/medicines3010007

FAO. (2004). Drought-resistant soils: Optimization of soil moisture for sustainable plant production. Food and Agriculture Organization of the United Nations.

Fascella, G., Montoneri, E., & Rouphael, Y. (2021). Biowaste-derived humic-like substances improve growth and quality of orange jasmine (Murraya paniculata L. Jacq.) plants in soilless potted culture. Resources, 10(8), 80. https://doi.org/10.3390/resources10080080

Fu, Z., Ciais, P., Wigneron, J.-P., Gentine, P., Feldman, A. F., Makowski, D., Viovy, N., Kemanian, A. R., Goll, D. S., Stoy, P. C., Prentice, I. C., Yakir, D., Liu, L., Ma, H., Li, X., Huang, Y., Yu, K., Zhu, P., Li, X., … Smith, W. K. (2024). Global critical soil moisture thresholds of plant water stress. Nature Communications, 15(1), 4826. https://doi.org/10.1038/s41467-024-49244-7

Gilman, E. F. (1999). Murraya paniculata. In Fact Sheet FPS (pp. 1–3). University of Florida.

Gómez-Bellot, M. J., Sánchez-Blanco, M. J., Lorente, B., Vicente-Colomer, M. J., & Ortuño, M. F. (2023). Effects of light intensity and water stress on growth, photosynthetic characteristics and plant survival of Cistus heterophyllus Desf. subsp. carthaginensis (Pau) M. B. Crespo & Mateo. Horticulturae, 9(8), 878. https://doi.org/10.3390/horticulturae9080878

Groppo, M., Afonso, L. F., & Pirani, J. R. (2022). A review of systematics studies in the citrus family (Rutaceae, Sapindales), with emphasis on American groups. Brazilian Journal of Botany, 45(1), 181–200. https://doi.org/10.1007/s40415-021-00784-y

Joshi, D., & Gohil, K. J. (2023). A brief review on Murraya paniculata (orange jasmine): Pharmacognosy, phytochemistry and ethanomedicinal uses. Journal of Pharmacopuncture, 26(1), 10–17. https://doi.org/10.3831/KPI.2023.26.1.10

Luo, H., Liu, S., Song, Y., Qin, T., Xiao, S., Li, W., Xu, L., & Zhou, X. (2024). Effects of waterlogging stress on root growth and soil nutrient loss of winter wheat at seedling stage. Agronomy, 14(6), 1247. https://doi.org/10.3390/agronomy14061247

Ma, X.-L., Zhu, S.-S., Liu, Y., Chen, H.-W., Shi, Y.-T., Zeng, K.-W., Tu, P.-F., & Jiang, Y. (2021). Carbazole alkaloids with potential cytotoxic activities targeted on PCK2 protein from Murraya microphylla. Bioorganic Chemistry, 114, 105113. https://doi.org/10.1016/j.bioorg.2021.105113

Mandal, S., Nayak, A., Kar, M., Banerjee, S. K., Das, A., Upadhyay, S. N., Singh, R. K., Banerji, A., & Banerji, J. (2010). Antidiarrhoeal activity of carbazole alkaloids from Murraya koenigii Spreng (Rutaceae) seeds. Fitoterapia, 81(1), 72–74. https://doi.org/10.1016/j.fitote.2009.08.016

Mishra, S., Spaccarotella, K., Gido, J., Samanta, I., & Chowdhary, G. (2023). Effects of heat stress on plant-nutrient relations: An update on nutrient uptake, transport, and assimilation. International Journal of Molecular Sciences, 24(21), 15670. https://doi.org/10.3390/ijms242115670

Msimbira, L. A., & Smith, D. L. (2020). The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.00106

Mukhopadhyay, S., Dutta, R., & Dhara, A. (2021). Assessment of air pollution tolerance index of Murraya paniculata (L.) Jack in Kolkata metro city, West Bengal, India. Urban Climate, 39, 100977. https://doi.org/10.1016/j.uclim.2021.100977

Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 2019, 1–9. https://doi.org/10.1155/2019/5794869

Nparks. (n.d.). Murraya paniculata. Singapore Botanic Gardens.

POWO. (2023). Murraya paniculata (L.) Jack. Plants of the World Online Kew Science. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:774441-1

Redhu, N. S., Thakur, Z., Yashveer, S., & Mor, P. (2022). Artificial intelligence: A way forward for agricultural sciences. In Bioinformatics in Agriculture: Next Generation Sequencing Era (pp. 641–668). https://doi.org/10.1016/B978-0-323-89778-5.00007-6

Rosenblatt, A. E., & Schmitz, O. J. (2016). Climate change, nutrition, and bottom-up and top-down food web processes. Trends in Ecology and Evolution, 31(12), 965–975. https://doi.org/10.1016/j.tree.2016.09.009

Safitri, R. N., Dayana, M. E., Annisa, V. C., Aulia, D., & Jumiarni, D. (2020). Pemanfaatan daun kemuning sebagai obat tradisional penyakit asma. PENDIPA Journal of Science Education, 4(3), 27–31. https://doi.org/10.33369/pendipa.4.3.27-31

Saqib, F., Ahmed, M. G., Janbaz, K. H., Dewanjee, S., Jaafar, H. Z., & Zia-Ul-Haq, M. (2015). Validation of ethnopharmacological uses of Murraya paniculata in disorders of diarrhea, asthma and hypertension. BMC Complementary and Alternative Medicine, 15(1), 319. https://doi.org/10.1186/s12906-015-0837-7

Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259

Shabrina, N. A., Maulana, Y., & Karyadi, B. (2024). Exploration of jaboticaba (Plinia cauliflora) cultivation in Bengkulu: Conservation in an optimized environment. JURNAL AGRONOMI TANAMAN TROPIKA (JUATIKA), 6(1). https://doi.org/10.36378/juatika.v6i1.3375

Swoczyna, T., Kalaji, H. M., Bussotti, F., Mojski, J., & Pollastrini, M. (2022). Environmental stress—what can we learn from chlorophyll a fluorescence analysis in woody plants? A review. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1048582

Trimble, S. (2021). Transpiration in plants: Its importance and applications. CID Bio-Science.

Vasca-Zampir, D., Balan, D., Luta, G., Gherghina, E., & Tudor, V. C. (2019). Effect of fertilization regime on Murraya exotica plants growth and bioactive compounds. Romanian Biotechnological Letters, 24(2), 245–253. https://doi.org/10.25083/rbl/24.2/245.253

Wang, W., Li, B., Zhao, X., Zhang, S., & Li, J. (2025). Light intensity moderates photosynthesis by optimizing photosystem mechanisms under high VPD stress. Plant Physiology and Biochemistry, 218, 109322. https://doi.org/10.1016/J.PLAPHY.2024.109322

Wang, Y., Luo, Z., Zhao, X., Cao, H., Wang, L., Liu, S., Wang, C., WangWang, Liu, M., Wang, L., & Liu, Z. (2023). Superstar microRNA, miR156, involved in plant biological processes and stress response: A review. Scientia Horticulturae, 316. https://doi.org/10.1016/j.scienta.2023.112010

Wei, R., Ma, Q., Zhong, G., Su, Y., Yang, J., Wang, A., Ji, T., Guo, H., Wang, M., Jiang, P., & Wu, H. (2020). Structural characterization, hepatoprotective and antihyperlipidemic activities of alkaloid derivatives from Murraya koenigii. Phytochemistry Letters, 35, 135–140. https://doi.org/10.1016/j.phytol.2019.11.001

Wu, W., Chen, L., Liang, R., Huang, S., Li, X., Huang, B., Luo, H., Zhang, M., Wang, X., & Zhu, H. (2025). The role of light in regulating plant growth, development and sugar metabolism: A review. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1507628

Yohanes, R., Harneti, D., Supratman, U., Fajriah, S., & Rudiana, T. (2023). Phytochemistry and biological activities of Murraya species. Molecules, 28(15), 5901. https://doi.org/10.3390/molecules28155901

Zhu, C., Lei, Z., & Luo, Y. (2015). Studies on antioxidative activities of methanol extract from Murraya paniculata. Food Science and Human Wellness, 4(3), 108–114. https://doi.org/10.1016/j.fshw.2015.07.001

Published
2025-05-01
How to Cite
Mustika Elmi Dayana, Ruyani, A., Nuari Handini, M., & Pohan, H. Y. (2025). Conservation of Murraya paniculata: Creating an Ideal Environment at the Biodiversity Conservation Center . JURNAL AGRONOMI TANAMAN TROPIKA (JUATIKA), 7(2), 393 -. https://doi.org/10.36378/juatika.v7i2.4216
Abstract viewed = 0 times
PDF downloaded = 0 times