Analysis of Genetic Variation of Ganoderma sp. as an Initial Step in Controlling Palm oil Basal Stem Rot Disease
Abstract
Basal stem rot (BSR) disease caused by Ganoderma spp., particularly Ganoderma boninense, represents a major threat to the sustainability of Indonesia's oil palm industry, resulting in productivity losses of 50-80%. High genetic variation among pathogens constitutes a primary obstacle in developing effective control strategies. This study aimed to analyze the genetic variation in Ganoderma as a preliminary step toward controlling basal stem rot in oil palm using ITS region DNA sequencing with ITS1 and ITS4 primers. Three Ganoderma sp. isolates were used: code 1 from the Biotechnology Laboratory of Lampung University, code 2 from the Plant Pest and Disease Laboratory of Gadjah Mada University, and code 3 from an online store. DNA extraction was performed using the TIANGEN Plant Genomic DNA Kit; PCR amplification with ITS1-ITS4 primers; and the PCR products were sequenced and analyzed using BioEdit and NCBI BLAST. Results showed that isolates code 1 and code 2 were identified as Ganoderma boninense, while isolate code 3 was contaminated with Fusarium sp. Alignment analysis using BioEdit confirmed extremely high genetic variation between the two G. boninense isolates with extensive nucleotide polymorphisms. This significant intraspecific diversity indicates the complexity of basal stem rot pathogen populations and emphasizes the importance of molecular approaches for accurate characterization. These findings provide a scientific foundation for developing more effective and adaptive control strategies and support oil palm resistance breeding programs based on representative pathogen genetic characteristics.
Downloads
References
Adotey, G., Alolga, R. N., Quarcoo, A., Yerenkyi, P., Otu, P., Anang, A. K., Okine, L. K. N., Gbewonyo, W. S. K., Holliday, J. C., & Lombardi, V. C. (2024). Molecular identification and characterization of five Ganoderma species from the Lower Volta River Basin of Ghana based on nuclear ribosomal DNA (nrDNA) sequences. Journal of Fungi, 10(1). https://doi.org/10.3390/jof10010006
Ahmad, M. F., Alsayegh, A. A., Ahmad, F. A., Akhtar, M. S., Alavudeen, S. S., Bantun, F., Wahab, S., Ahmed, A., Ali, M., Elbendary, E. Y., Raposo, A., Kambal, N., & Abdelrahman, M. H. (2024). Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e25607
Chen, S., Xu, J., Liu, C., Zhu, Y., Nelson, D. R., Zhou, S., Li, C., Wang, L., Guo, X., Sun, Y., Luo, H., Li, Y., Song, J., Henrissat, B., Levasseur, A., Qian, J., Li, J., Luo, X., Shi, L., … Sun, C. (2012). Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nature Communications, 3, 1–9. https://doi.org/10.1038/ncomms1923
Daval, A., Pomiès, V., Le Squin, S., Denis, M., Riou, V., Breton, F., Nopariansyah, Bink, M., Cochard, B., Jacob, F., Billotte, N., & Tisné, S. (2021). In silico QTL mapping in an oil palm breeding program reveals a quantitative and complex genetic resistance to Ganoderma boninense. Molecular Breeding, 41(9). https://doi.org/10.1007/s11032-021-01246-9
Fryssouli, V., Zervakis, G. I., Polemis, E., & Typas, M. A. (2020). A global meta-analysis of ITS rDNA sequences from material belonging to the genus Ganoderma (Basidiomycota, Polyporales), including new data from selected taxa. MycoKeys, 75, 71–143. https://doi.org/10.3897/mycokeys.75.59872
Gunnels, T., Creswell, M., McFerrin, J., & Whittall, J. B. (2020). The ITS region provides a reliable DNA barcode for identifying reishi/lingzhi (Ganoderma) from herbal supplements. PLoS ONE, 15(11), 1–15. https://doi.org/10.1371/journal.pone.0236774
Hall, A. T. (2011). BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences, 2(1), 60–61.
Hayati, R., Basyuni, M., & Chalil, D. (2020). Genetic diversity, sequence, and bioinformatic analysis of Ganoderma boninense isolates. International Journal of Agriculture & Biology, 23(4), 763–770. https://doi.org/10.17957/IJAB/15.1350
Hayati, R., Lisnawita, Munir, E., & Basyuni, M. (2021). Genetic diversity and sequence analysis from Elaeis guineensis Jacq. infected with Ganoderma boninense. International Journal on Advanced Science, Engineering and Information Technology, 11(2), 798–804. https://doi.org/10.18517/ijaseit.11.2.10382
Istifadah, N., Baharudin, A., & Hartati, S. (2024). Application methods of compost and vermicompost for suppressing damping-off disease (Rhizoctonia solani) in tomato seedling. Cropsaver Journal of Plant Protection, 7(1), 51–58. https://doi.org/10.24198/cropsaver.v7i1.55226
Istiqomah, F. N., Novanto, P. R., & Sitanggang, M. (2024). Penurunan kejadian dan intensitas penyakit busuk pangkal batang akibat jamur Ganoderma pada bibit kelapa sawit dengan aplikasi mikoriza. Jurnal Hama dan Penyakit Tumbuhan, 12(2), 103–110. https://doi.org/10.21776/ub.jurnalhpt.2024.012.2.4
Jargalmaa, S., Eimes, J. A., Park, M. S., Park, J. Y., Oh, S. Y., & Lim, Y. W. (2017). Taxonomic evaluation of selected Ganoderma species and database sequence validation. PeerJ, 5, 1–16. https://doi.org/10.7717/peerj.3596
Khoo, Y. W., & Chong, K. P. (2023). Ganoderma boninense: General characteristics of pathogenicity and methods of control. Frontiers in Plant Science, 1–17. https://doi.org/10.3389/fpls.2023.1156869
Midot, F., Yu, S., Lau, L., Wong, W. C., Tung, H. J., & Yap, M. L. (2019). Genetic diversity and demographic history of Ganoderma boninense in oil palm plantations of Sarawak, Malaysia inferred from ITS regions. Microorganisms, 7(10), 1–17. https://doi.org/10.3390/microorganisms7100464
Minarsih, H., Lingga, D. N. P., Darmono, T., & Herliyana, E. N. (2016). Analisis keragaman genetik Ganoderma spp. yang berasosiasi dengan tanaman kakao menggunakan RAPD. E-Journal Menara Perkebunan, 79(1), 6–14. https://doi.org/10.22302/ppbbi.jur.mp.v79i1.72
Nagappan, J., Chin, C. F., Angel, L. P. L., Cooper, R. M., May, S. T., & Low, E. T. L. (2018). Improved nucleic acid extraction protocols for Ganoderma boninense, G. miniatocinctum, and G. tornatum. Biotechnology Letters, 40(11–12), 1541–1550. https://doi.org/10.1007/s10529-018-2603-7
Nagappan, J., Kadri, F., Foan, C. C., Cooper, R. M., May, S. T., Seman, I. A., & Low, E. T. L. (2021). A rapid and efficient DNA extraction protocol for Ganoderma zonatum, a basal and upper stem rot pathogen of oil palm in Malaysia. Journal of Oil Palm Research, 33(1), 12–20. https://doi.org/10.21894/jopr.2020.0058
Nguyen, T. T. T., Nguyen, H. D., Bui, A. T., Pham, K. H. T., Van, K. T. P., Tran, L. T., & Tran, M. H. (2023). Phylogenetic analysis and morphology of Ganoderma multipileum, a Ganoderma species associated with dieback of Delonix regia (Boj. ex Hook.) Raf. in Vietnam. Science Progress, 106(3), 1–18. https://doi.org/10.1177/00368504231195503
Othman, A., Lau, B. Y. C., Nurazah, Z., Shahwan, S., Rusli, M. H., Singh, R., Ong Abdullah, M., Marjuni, M., Yaakub, Z., Sundram, S., Manaf, M. A. A., & Ramli, U. S. (2024). Comparative proteomic and metabolomic studies between partial resistant and susceptible oil palm reveal the molecular mechanism associated with Ganoderma boninense infection. Physiological and Molecular Plant Pathology, 129, 102198. https://doi.org/10.1016/j.pmpp.2023.102198
Pawlik, A., Janusz, G., Dębska, I., Siwulski, M., Frąc, M., & Rogalski, J. (2015). Genetic and metabolic intraspecific biodiversity of Ganoderma lucidum. BioMed Research International, 2015. https://doi.org/10.1155/2015/726149
Permatasari, G. W., Puspita, M., & Kresnawaty, I. (2023). Validation of early infection markers for Ganoderma in oil palm at three endemic locations. Jurnal Penelitian Kelapa Sawit, 31(1), 1–12. https://doi.org/10.22302/iopri.jur.jpks.v31i1.195
Purba, A., Hayati, R., Putri, L. A. P., Chalil, D., & Afandi, D. (2020). Genetic diversity and structure of Ganoderma boninense isolates from oil palm and other plantation crops. Biodiversitas, 21(2), 451–456. https://doi.org/10.13057/biodiv/d210204
Purnamasari, M. I., Prihatna, C., Gunawan, A. W., & Suwanto, A. (2012). Isolasi dan identifikasi secara molekuler Ganoderma spp. yang berasosiasi dengan busuk pangkal batang kelapa sawit. Jurnal Fitopatologi Indonesia, 8(1), 9–15. https://doi.org/10.14692/jfi.8.1.9
Siddiqui, Y., Surendran, A., Paterson, R. R. M., Ali, A., & Ahmad, K. (2021). Current strategies and perspectives in detection and control of basal stem rot of oil palm. Saudi Journal of Biological Sciences, 28(5), 2840–2849. https://doi.org/10.1016/j.sjbs.2021.02.016
Susanto, A., Prasetyo, A. E., Priwiratama, H., Wening, S., & Surianto. (2013). Ganoderma boninense penyebab penyakit busuk batang atas kelapa sawit. Jurnal Fitopatologi Indonesia, 9(4), 123–126. https://doi.org/10.14692/jfi.9.4.123
Utomo, C., Tanjung, Z. A., Aditama, R., Buana, R. F. N., Pratomo, A. D. M., Tryono, R., & Liwang, T. (2018). Draft genome sequence of the phytopathogenic fungus Ganoderma boninense, the causal agent of basal stem rot disease on oil palm. Genome Announcements, 6(17), 1–2. https://doi.org/10.1128/genomeA.00122-18
Widiastuti, H., Minarsih, H., Santoso, D., Eris, D. D., & Permatasari, G. W. (2020). Application of organic fungicide in controlling basal stem rot disease for mature oil palm. E-Journal Menara Perkebunan, 88(1). https://doi.org/10.22302/iribb.jur.mp.v88i1.368
Wong, W. C., Tung, H. J., Fadhilah, M. N., Midot, F., Lau, S. Y. L., Melling, L., Astari, S., Hadziabdic, Đ., Trigiano, R. N., Goh, K. J., & Goh, Y. K. (2021). Genetic diversity and gene flow amongst admixed populations of Ganoderma boninense, causal agent of basal stem rot in African oil palm (Elaeis guineensis Jacq.) in Sarawak, Peninsular Malaysia, and Sumatra. Mycologia, 00(00), 1–16. https://doi.org/10.1080/00275514.2021.1884815
Zakaria, L. (2023). Basal stem rot of oil palm: The pathogen, disease incidence, and control methods. Plant Disease, 107(3), 603–615. https://doi.org/10.1094/PDIS-02-22-0358-FE
Zhou, D. X., Kong, X. M., Huang, X. M., Li, N., Feng, N., & Xu, J. W. (2024). Breeding a new Ganoderma lucidum strain with increased contents of individual ganoderic acids by mono–mono crossing of genetically modified monokaryons. Frontiers in Microbiology, 15, 1–9. https://doi.org/10.3389/fmicb.2024.1410368
Copyright (c) 2025 Achmad Himawan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Agronomi Tanaman Tropika (JUATIKA) agree to the following terms:
Authors retain copyright and grant the Jurnal Agronomi Tanaman Tropika (JUATIKA) right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially) with an acknowledgment of the work's authorship and initial publication in Jurnal Agronomi Tanaman Tropika (JUATIKA).
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Agronomi Tanaman Tropika (JUATIKA). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.





More Information


