Soil Compaction in Oil Palm (Elaies guineensis Jacq.) Plantations: A literature review

  • Tati Maharani Universitas Islam Riau Pekanbaru
  • Adelina Maryanti Universitas Islam Riau Pekanbaru
  • Sri Mulyani Universitas Islam Riau Pekanbaru
  • Salmita Salman Universitas Islam Riau Pekanbaru
  • Ilma Satriana Dewi Universitas Islam Riau Pekanbaru
  • Tri Nopsagiarti Universitas Islam Kuantan Singingi Teluk Kuantan
Keywords: Mechanization, Soil physical degradation, Root growth limitation, Controlled traffic farming, Sustainable land management

Abstract

Soil compaction is becoming a serious issue in oil palm plantations due to the escalating mechanization and more intensive field practices. This review consolidates studies into the source, effects and remediation of compaction in order to gain an insight into how soil degradation affects oil palm growth and yield. A systematic review was conducted of studies in tropical and subtropical systems that applied field experiments, geostatistical mapping, and below-ground soil biological analyses. The results indicate that compaction is primarily influenced by mechanism lightening intensity, texture and water status resulting in an increase of bulk density and penetration resistance as well as a reduction of porosity. Even though root biomass reduction and root structural modification frequently take place in compaction treatments, yield response is not always detrimental, partial compensation has been demonstrated by others through acclimation of roots altering growth. Mechanical subsoiling, biological amendments and controlled traffic farming were the most effective mitigation options, but their long-term effects and interactions with soil microbiota are still unknown. Additionally, compaction changes the soil microbial community and chemistry, which results in nutrient cycling disturbances and greenhouse gas emissions. On the whole, these syntheses point to requirements for more integrated ecological and long-term management strategies, combining both physical and biological aspects of soil health and oil palm productivity in tropical landscape overall.

Downloads

Download data is not yet available.

References

Adu, M. O., Atia, K., Arthur, E., Asare, P. A., Obour, P. B., Danso, E. O., Frimpong, K. A., Sanleri, K. A., Asare-Larbi, S., Adjei, R., Mensah, G., & Andersen, M. N. (2022). The use of oil palm empty fruit bunches as a soil amendment to improve growth and yield of crops: A meta-analysis. Agronomy for Sustainable Development, 42(2), Article 13. https://doi.org/10.1007/s13593-022-00753-z

Ahmad, B., & Kumar, G. (2023). Precision agriculture and sustainable crop management. Agriculture in 21st Century. https://doi.org/10.52458/9789388996815.2023.eb.ch-16

Banks, A., & Melves, S. F. (Eds.). (2012). Horizons in crop production: Precision agriculture and no-till farming.

Benetti, M., & Sartori, L. (2023). Different strategies to alleviate soil compaction risk during tillage operations. Lecture Notes in Civil Engineering, 337, 323–333. https://doi.org/10.1007/978-3-031-30329-6_33

Bhatt, P., Giri, R., & Napari, B. (2024). Soil compaction and its impact on soil properties, microbiome, greenhouse gas emission, and plant root growth. Big Data in Agriculture, 6(1), 66–69. https://doi.org/10.26480/bda.01.2024.66.69

Biazatti, R. M., Filho, E. G. de B., Bergamin, A. C., Pagnussat, E. P., Souza, F. R. de, Almeida, P. M. de, Dias, J. R. M., Campos, M. C. C., Lima, J. M. G. de, & Oliveira, S. A. de. (2022). Effects of soil compaction on root growth of cover crops in the western Amazon. Scientia Plena, 18(7). https://doi.org/10.14808/sci.plena.2022.070213

Busman, N. A., Maie, N., Ishak, C. F., Sulaiman, M. F., & Melling, L. (2021). Effect of compaction on soil CO₂ and CH₄ fluxes from tropical peatland in Sarawak, Malaysia. Environment, Development and Sustainability, 23(8), 11646–11659. https://doi.org/10.1007/s10668-020-01132-y

Caliman, J.-P. (1990). Dégradation de propriétés physiques conditionnant la fertilité des sols sous culture du palmier à huile en Côte d’Ivoire: Essai de correction (Doctoral dissertation, Université de Bourgogne).

Caliman, J.-P., Concaret, J., Olivin, J., & Dufour, O. (1990). Maintien de la fertilité physique des sols en milieu tropical humide sous culture du palmier à huile. Oléagineux.

Caliman, J.-P., Olivin, J., & Dufour, O. (1987). Dégradation des sols ferrallitiques sableux en culture de palmier à huile par acidification et compaction: Méthodes de correction. Oléagineux.

Chong, B. H., & Chung, S. O. (2006). Site-specific quantification and management of soil compaction: A review. Journal of Biosystems Engineering, 31(1), 24–32. https://doi.org/10.5307/jbe.2006.31.1.024

de Souza, P. R., de Lima, H. V., da Silva, G. B., & dos Santos Moura, A. (2023). Limiting water content for compaction induced by mechanized operations in oil palm soils in the eastern Amazon. Journal of Soil Science and Plant Nutrition, 23(4), 6167–6182. https://doi.org/10.1007/s42729-023-01474-2

Frene, J. P., Pandey, B. K., & Castrillo, G. (2024). Under pressure: Elucidating soil compaction and its effect on soil functions. Plant and Soil, 502(1), 267–278. https://doi.org/10.1007/s11104-024-06573-2

Fujii, K., Toma, T., & Sukartiningsih. (2021). Comparison of soil acidification rates under different land uses in Indonesia. Plant and Soil, 465(1), 1–17. https://doi.org/10.1007/s11104-021-04923-y

Guillaume, T., Holtkamp, A. M., Damris, M., Brümmer, B., & Kuzyakov, Y. (2016). Soil degradation in oil palm and rubber plantations under land resource scarcity. Agriculture, Ecosystems & Environment, 232, 110–118. https://doi.org/10.1016/j.agee.2016.07.002

Kayombo, B., & Lal, R. (1993). Tillage systems and soil compaction in Africa. Soil and Tillage Research, 27(1–4), 35–72. https://doi.org/10.1016/0167-1987(93)90061-s

Lestariningsih, I. D., Widianto, & Hairiah, K. (2013). Assessing soil compaction with two different methods of soil bulk density measurement in oil palm plantation soil. Procedia Environmental Sciences, 17, 172–178. https://doi.org/10.1016/j.proenv.2013.02.026

Nelson, P. N., Rhebergen, T., Berthelsen, S., Webb, M. J., Banabas, M., Oberthür, T., Donough, C. R., & Lubis, A. (2011). Soil acidification under oil palm: Rates and effects on yield. Better Crops, 95(4), 22–25.

Sato, M. K., de Lima, H. V., Ferreira, R. L. da C., Rodrigues, S., & da Silva, Á. P. (2017). Least limiting water range for oil palm production in the Amazon region, Brazil. Scientia Agricola, 74(2), 148–156. https://doi.org/10.1590/1678-992x-2015-0408

Simarmata, J. E., Rauf, A., & Hidayat, B. (2017). Physical soil characteristics in oil palm (Elaeis guineensis Jacq.) plantation at different planting generations. Jurnal Ilmu Pertanian Indonesia, 22(3), 191–197. https://doi.org/10.18343/jipi.22.3.191

Yahya, Z. (2010). Effects of machinery compaction of Bernam series soil (Typic Endoaquepts) on soil properties and oil palm performance (Doctoral thesis, Universiti Putra Malaysia).

Yahya, Z., Husin, A., Talib, J., Othman, J., Ahmed, O. H., & Jalloh, M. B. (2010a). Oil palm (Elaeis guineensis) roots response to mechanization in Bernam series soil. American Journal of Applied Sciences, 7(3), 343–348. https://doi.org/10.3844/ajassp.2010.343.348

Yahya, Z., Husin, A., Talib, J., Othman, J., Ahmed, O. H., & Jalloh, M. B. (2010b). Soil compaction and oil palm (Elaeis guineensis) yield in a clay-textured soil. American Journal of Agricultural and Biological Sciences, 5(1), 15–19. https://doi.org/10.3844/ajabssp.2010.15.19

Zuraidah, Y. (2019). Influence of soil compaction on oil palm yield. Journal of Oil Palm Research, 31(1), 67–72. https://doi.org/10.21894/jopr.2018.0064

Published
2026-01-07
How to Cite
Maharani, T., Maryanti, A., Mulyani, S., Salman, S., Dewi, I. S., & Nopsagiarti, T. (2026). Soil Compaction in Oil Palm (Elaies guineensis Jacq.) Plantations: A literature review. JURNAL AGRONOMI TANAMAN TROPIKA (JUATIKA), 8(1), 23 -. https://doi.org/10.36378/juatika.v8i1.4981
Abstract viewed = 0 times
PDF downloaded = 0 times