Implementation of K-Means Clustering Algorithm for Grouping Traffic Violation Levels in Siak
Abstract
Traffic offences often occur in different regions, ranging from mild to moderate to severe. The categories of offences include not carrying a Driver's Licence, stnk (Vehicle Number Certificate) or stck (Vehicle Trial Certificate) is invalid, not wearing a seat belt, not turning on headlights during the day and under certain conditions, disobeying traffic signs, disobeying traffic signals. Moderate offences include not having a Driver's Licence, not concentrating while driving and breaking the door of the drawbar. Serious violations include deviating from other vehicles on the road, damaging and interfering with road functions, not insuring one's own responsibility and not insuring staff and passengers. In this study, the K-Means algorithm was used with the aim of obtaining information on data groups of traffic violations based on the time of the incident so that the cause of the traffic violations that occurred in Tasikmalaya City is known. Based on the validation with Davies Bouldin Index metric, 4 clusters were identified which can group the data well. The PerformanceVector results from the assessment of the clusters resulted in 4 clusters with a value of 0.134. Cluster 1 with the most data violations amounting to 74 violations occurred at night, Cluster 2 with the most violations amounting to 16 violations occurred during the day, Cluster 3 with the most violations amounting to 6 violations occurred in the afternoon and Cluster 4 with the most violations amounting to 113 violations occurred in the morning.
Downloads
References
[2] Ayu, D., Wati, M., Puspitasari, D., & Purwaningsih, E. (2019). Metode Clustering Pada Model Algoritma K-Means Untuk Pemilihan Alat Kontrasepsi, 3(2), 129–138.
[3] Azzirrahman, M., Normelani, E., & Arisanty, D. (2015). Faktor Penyebab Terjadinya Kecelakaan Lalu Lintas pada Daerah Rawan Kecelakaan di Kecamatan Banjarmasin Tengah Kota Banjarmasin. Jurnal Pendidikan Geografi, 2(3), 20 37.
[4] Eko, W. A. (2016). Implementasi data mining dalam pengelompokan data peserta didik di sekolah untuk memprediksi calon penerima beasiswa dengan menggunakan algoritma k- means (studi kasus sman 16 bekasi), 21(3).
[5] Endra, F. (2017). Pengantar Metodologi Penelitian (Statiska Praktis). zifatama jawara.
[6] Iswari, L., & Ayu, E. G. (2015). Pemanfaatan Algoritma K-Means Untuk Pemetaan Hasil Klasterisasi Data Kecelakaan Lalu Lintas. Pemanfaatan Algoritma K-Means Untuk Pemetaan Hasil Klasterisasi Data Kecelakaan Lalu Lintas, 21(1), 1–13. https://doi.org/10.20885/teknoin.vol21.iss1.art7
[7] Purwaningsih, E. (2019). Laporan Akhir Penelitian PDY: Analisis Kecelakaan Berlalu Lintas Di Kota Jakarta Dengan Menggunakan Metode KMeans. Jakarta.
[8] Rahmat C.T. I, B., Gafar, A. A., Fajriani, N., Ramdani, U., Uyun, F. R., P, Y. P., & Ransi, N. (2017).IMPLEMETASI K-MEANS CLUSTERING PADA RAPIDMINER UNTUK ANALISIS DAERAH RAWAN KECELAKAAN. In Prosiding Seminar Nasional Riset Kuantitatif Terapan 2017 (pp.58–62). Kendari: Lembaga Pengembangan Sistem Informasi.
[9] Saragih, P. G. G. (2013). ANALISA KECELAKAAN LALU LINTAS DI KOTA PEMATANG SIANTAR. JURNAL TEKNIK SIPIL USU, 2(3). Retrieved from https://jurnal.usu.ac.id/index.php/jts/article /view/5676
[10] Saragih, R., & Sitompul, J. N. (2019). Perbandingan Data Mining Mengidentifikasi Pola Keterkaitan Variabel Kecelakaan Lalu Lintas Di Polresta Kota Medan. Journal Information System Development (ISD), 4(1), 39–45. Retrieved from https://ejournal.medan.uph.edu/index.php/i sd/article/view/281
[11] Vulandari, R. T. (2017). Data Mining Teori dan Aplikasi Rapidminer. Yogyakarta: Gaava Media.
[12] Kesuma, D. P. (2018, Desember 20). Polisi Akui Angka Kecelakaan Lalu Lintas Sepanjang 2018 Cenderung Naik. Diambil kembali dari Tribunnews.com: https://www.tribunnews.com
[13] Lestian , A. C., & Ahmad, Z. F. (2017). Implementasi Algoritma K-Means Pada Data pelanggaran Lalu Lintas Di Pengadilan Negri Purwodadi. Jurnal UDINUS.
[14] Mulyani, E. D., Agustin, S., & Surgawi, N. (2018). Implementasi Algoritma KMeans dan Fp-Growth Untuk Rekomendasi Bimbingan Belajar Berdasarkan Segmentasi Akademik Siswa. Informatic Technique) Journal, 160-173.
[15] Ramadhani , N., Rahman, A. F., & Riskiyati, D. (2017). Analisis Cluster Data Register Perkara lalu Lintas Menggunakan Algoritma K-Means. SESINDO 9.
Copyright (c) 2022 Bias Arbi Fauzan, M Jamaris, Junadhi Junadhi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.