Student Identification Based on Patterns of Association For Student Misbehaviour Using Frequent Pattern Growth Algorithms

  • Erlinda Erlinda
  • Dwipa Junika Putra
  • Mourend Devegi
Keywords: Data Mining, Student Violations, Association Rule, Fp-Growth, Frequent Itemset

Abstract

Student infractions are incidents often committed by students who break the rules at school. This naturally worries school authorities and overwhelms them with student misbehavior. Student rule-breaking is a common problem that can interfere with a safe and orderly learning environment. The more students break the rules, the greater the impact on several aspects, including student achievement, discipline, suboptimal teaching and learning activities, and students' social lives outside of school. Identifying students who are prone to rule violations can help school officials implement more effective prevention programs. Data mining is a process of extracting information from large data sets to discover patterns and relationships hidden within them. This study aims to identify frequent student infractions using the Frequent Pattern Growth algorithm. The Frequent Pattern Growth (FP -growth) algorithm is used to generate frequent itemsets that are then used in the association rules process. The association rules process aims to find rules or relationships between violations based on the discovered Frequent Itemsets. This process is influenced by predefined minimum support and minimum confidence values. A Minimum Support value of 30% and a Minimum Confidence value of 50% are used to obtain rules with a sufficiently high confidence level. It is expected that the identification results from this study will provide a better understanding of the types of violations commonly committed by students in school. This information can be used by school officials to develop more effective prevention strategies and focus on.

Downloads

Download data is not yet available.

References

Prasad GR. Intelligent (artificial) marketing: A data mining perspective. Int J Manag IT …. 2019;9(May).

Putra DJ, Nofriadi N, Erlinda E. Implementation of Fuzzy Logic Using Mamdani Method to Determine The Quantity of Bag Production (Case Study In Roman Indah Padang Bag Factory). J Teknol DAN OPEN SOURCE. 2022;5(1).

Iqbal M, Khoirunnisa N. Design And Construction Of An Expert System For Early Detection of Mental Illness in COVID-19 Patients And Handling Using Certainty Factor Method. J Teknol Dan Open Source. 2021;4(2):216–26.

Malik RA, Putra DJ, Firmansyah W. Implementation of K-Means Clustering Algorithm in Measuring Learning Media Evaluations Result by Student (Case Study Introductory Information Technology Course for Bachelor Degree of Digital Business Upertis). 2016. 1–23 p.

Anggun Pastika Sandi, Vina Widya Ningsih. Implementasi Data Mining Sebagai Penentu Persediaan Produk Dengan Algoritma Fp-Growth Pada Data Penjualan Sinarmart. J Publ Ilmu Komput dan Multimed. 2022;1(2):111–22.

Hasanah NN, Purnomo AS. Implementasi Data Mining Untuk Pengelompokan Buku Menggunakan Algoritma K-Means Clustering (Studi Kasus : Perpustakaan Politeknik LPP Yogyakarta). J Teknol Dan Sist Inf Bisnis. 2022;4(2):300–11.

Aranski AW, Handoko K. Data Mining Dalam Pengelompokan Nilai Iq Siswa. J Teknol Dan Open Source. 2019;2(2):13–22.

Qalbi N, Ibrahim. Senioritas dan Perilaku Kekerasan di Kalangan Mahasiswa (Studi Kasus pada Mahasiswa Fakultas Ilmu Sosial Universitas Negeri Makassar). Soc J Soc Sci Humanit. 2021;1(1).

Wahyuni T. SISTEM PAKAR UNTUK MENGIDENTIFIKASI MASALAH PSIKOLOGI REMAJA MENGGUNAKAN METODE INFERENSI FORWARD CHAINING BERBASIS ANDROID. J-ENSITEC. 2016;2(02).

Riadi D. Peran Lingkungan Pendidikan Islam. Eliya, I A S Int Semin Islam Stud , IAIN Bengkulu. 2019;

Triandini M, Defit S, Nurcahyo GW. Data Mining dalam Mengukur Tingkat Keaktifan Siswa dalam Mengikuti Proses Belajar pada SMP IT Andalas Cendekia. J Inf dan Teknol. 2021;3:167–73.

Syafarudi, DKK. Dasar-Dasar Bimbingan Dan Konseling Telaah Konsep , Teori Dan Praktik. Perdana Publishing. 2019.

Et. al. PRP. Efficient Model for Privacy Preserving Classification Of Data Streams. Turkish J Comput Math Educ. 2021;12(2).

Lei Xu, Chunxiao Jiang, Jian Wang, Jian Yuan, Yong Ren. Information Security in Big Data: Privacy and Data Mining. IEEE Access. 2014;2.

Sasongko TB, Arifin O. Implementasi Metode Forward Selection pada Algoritma Support Vector Machine (SVM) dan Naive Bayes Classifier Kernel Density (Studi Kasus Klasifikasi Jalur Minat SMA). J Teknol Inf dan Ilmu Komput. 2019;6(4).

Wang PS, Lai F, Hsiao HC, Wu JL. Insider Collusion Attack on Privacy-Preserving Kernel-Based Data Mining Systems. IEEE Access. 2016;4.

AHMAD ADRI. Implementasi Data Mining Menggunakan Algoritma Apriori. Pap Knowl Towar a Media Hist Doc. 2021;6(2):1–77.

Anwar MT, Permana DRA. Perbandingan Performa Model Data Mining untuk Prediksi Dropout Mahasiwa. J Teknol dan Manaj. 2021;19(2).

Feng Y, Ji M, Xiao J, Yang X, Zhang JJ, Zhuang Y, et al. Mining Spatialoral Patterns and Structural Sparsity for Human Motion Data Denoising. IEEE Trans Cybern. 2015;45(12).

Mai TT, Bezbradica M, Crane M. Learning behaviours data in programming education: Community analysis and outcome prediction with cleaned data. Futur Gener Comput Syst. 2022;127.

Han B, Luo L, Sheng G, Li G, Jiang X. Framework of Random Matrix Theory for Power System Data Mining in a Non-Gaussian Environment. IEEE Access. 2016;4.

Han F, Li Y. Moment Bounds for Large Autocovariance Matrices Under Dependence. J Theor Probab. 2020;33(3).

Tahir M, Sitompul N. Penerapan Algoritma Fp-Growth Dalam Menentukan Kecenderungan Mahasiswa Mengambil Mata Kuliah Pilihan. Netw Eng Res Oper. 2021;6(1):59.

Budianto H, Riana J. Penerapan Data Mining menggunakanalgoritma Fp-Growth Untuk Penentuan Strategi Promosi Fakultas Ilmu Komputer Universitas Kuningan. J Cloud Inf. 2020;5(1):22–9.

Indahsari D. Penerapan Metode Asosiasi Dengan Algoritma FP-Growth Pada Data Transaksi PT John Tampi Group. Comput Based Inf Syst J. 2021;9(2):1–9.

Fu X, Huang J, Zeng D, Huang Y, Ding X, Paisley J. Removing rain from single images via a deep detail network. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017.

Published
2023-06-22
How to Cite
Erlinda, E., Putra, D. J., & Devegi, M. (2023). Student Identification Based on Patterns of Association For Student Misbehaviour Using Frequent Pattern Growth Algorithms. JURNAL TEKNOLOGI DAN OPEN SOURCE, 6(1), 142 - 150. https://doi.org/10.36378/jtos.v6i1.3071
Abstract viewed = 129 times
PDF downloaded = 104 times

Most read articles by the same author(s)

1 2 > >>