Classification Of Rice Plant Diseases Using K-Nearest Neighbor Algorithm Based On Hue Saturation Value Color Extraction And Gray Level Co-Occurrence Matrix Features

  • Siti Saniah Universitas Islam Negeri Sumatera Utara, Indonesia
  • Mhd. Furqan Universitas Islam Negeri Sumatera Utara
Keywords: K-Nearest Neighbor, HSV, GLCM, Rice Disease, Image Processing

Abstract

This research aims to classify diseases in rice plants using the K-Nearest Neighbor (K-NN) algorithm based on Hue Saturation Value (HSV) color feature extraction and Gray Level Co-Occurrence Matrix (GLCM) texture. The main problem faced is how to identify the type of disease in rice plants automatically using digital images. Diseases such as Blight, Tungro, and Crackle often attack rice plants and require an accurate early detection system. Lack of understanding in recognizing disease symptoms manually often leads to errors in handling. For this reason, this research develops an image processing-based classification system that can detect diseases such as Blight, Tungro, and Crackle. The method used in this research is image processing which includes RGB to HSV color space conversion, texture feature extraction using GLCM, and classification using K-NN algorithm. The dataset consists of 240 images, divided into training data and testing data, namely 192 training data and 48 testing data. Tests were conducted by calculating accuracy at various values of the K parameter, namely K = 1, K = 3, and K = 5, to determine the effectiveness of the model in classifying plant diseases. The purpose of this study was to evaluate the accuracy of the system in identifying rice diseases and test the combination of HSV and GLCM features in improving classification performance. The results showed that using HSV and GLCM features together resulted in the highest accuracy at K=3 with an accuracy value of 75%. The system is expected to assist farmers in detecting plant diseases quickly and effectively, thus minimizing production losses and supporting agricultural sustainability

Downloads

Download data is not yet available.

Author Biographies

Siti Saniah, Universitas Islam Negeri Sumatera Utara, Indonesia

Departement of Computer Science, Faculty Science and Technology, Universitas Islam Negeri Sumatera Utara

Mhd. Furqan, Universitas Islam Negeri Sumatera Utara

Departement of Computer Science, Faculty Science and Technology, Universitas Islam Negeri Sumatera Utara

References

M. K. Khamdani, N. Hidayat, and R. K. Dewi, “Implementasi Metode K-Nearest Neighbor Untuk Mendiagnosis Penyakit Tanaman Bawang Merah,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 1, pp. 11–16, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

A. Alfayanti, Y. Yesmawati, L. Harta, K. Dinata, and S. Yuliasari, “Persepsi petani terhadap teknologi pengendalian hama dan penyakit terpadu padi sawah dengan agensia hayati (studi kasus di Kelurahan Semarang Kota Bengkulu ),” Pros. Semin. Nas. Lahan Suboptimal, vol. 9, pp. 233–241, 2021.

W. S. Sari, C. A. Sari, F. I. Komputer, and U. D. Nuswantoro, “Klasifikasi Bunga Mawar Menggunakan KNN dan Ekstraksi Fitur GLCM dan HSV,” vol. 5, pp. 145–156, 2022.

W. Aliansa, H. N. Ifayatin, and R. A. Saputra, “Segmentasi Kematangan Pisang Raja Berbasis Fitur Warna HSV Menggunakan Metode KNN,” J. Sains Komput. Inform., vol. 7, no. 2, pp. 595–608, 2023.

Z. Y. Lamasigi, S. -, H. -, and Y. Lasena, “Identifikasi Tingkat Kesegaran Ikan Tuna Menggunakan Metode GLCM dan KNN,” Jambura J. Electr. Electron. Eng., vol. 4, no. 1, pp. 70–76, 2022, doi: 10.37905/jjeee.v4i1.12045.

M. A. Setyawan, P. Kasih, M. Ayu, and D. Widyadara, “Klasifikasi Penyakit Daun Jagung Berdasarkan Ruang Warna HSV dan Fitur Tekstur Dengan Algoritma K-NN,” pp. 67–72, 2022.

C. Irawan, E. H. Rachmawanto, C. A. Sari, and R. U. Nur, “Klasifikasi Citra Mengkudu Berdasarkan Perhitungan Jarak Piksel pada Algoritma K- Nearest Neighbour,” vol. 14, no. 02, pp. 200–207, 2023, doi: 10.35970/infotekmesin.v14i2.1827.

I. F. Annur, J. Umami, M. N. Annafii, N. Trisnaningrum, and O. V. Putra, “Klasifikasi Tingkat Keparahan Penyakit Leafblast Tanaman Padi Menggunakan MobileNetv2,” Fountain Informatics J., vol. 8, no. 1, pp. 7–14, 2023, doi: 10.21111/fij.v8i1.9419.

H. P. Eryah, S. P. Telnoni, and Y. Da Costa, “Isolasi Dan Identifikasi Bakteri Penyakit Hawar Daun Di Desa Naibonat Kecamatan Kupang Timur, Kabupaten Kupang Nusa Tenggara Timur,” Flobamora Biol., vol. 1, no. 2, pp. 9–18, 2022.

M. D. Furqan, M. Sayuthi, and H. Hasnah, “Biodiversitas Arthropoda Predator pada Beberapa Varietas Padi Sawah,” J. Ilm. Mhs. Pertan., vol. 8, no. 3, pp. 526–541, 2023.

S. Katarina Sianturi, A. Syaefudin, and A. Nabila, “PKM Pengembangan Sistem Pakar Diagnosa Penyakit Padi pada Kelompok Tani Mekartani Desa Lebakwana,” Sevana J. Pengabdi. Kpd. Masy., vol. 2, no. 1, pp. 43–48, 2023, doi: 10.47926/sjpkm.2023.2.1.43-48.

I. Il Sanuriza et al., “First report of Pyricularia oryzae, the cause of blast disease in upland rice, in Lombok, West Nusa Tenggara, Indonesia,” Biodiversitas, vol. 25, no. 2, pp. 683–689, 2024, doi: 10.13057/biodiv/d250227.

F. Firmansyah, K. Khaerana, and E. A. Sidik, “Hubungan Skor Penyakit Tungro terhadap Kehilangan Komponen Hasil Padi,” AGROSAINSTEK J. Ilmu dan Teknol. Pertan., vol. 7, no. 1, pp. 17–24, 2023, doi: 10.33019/agrosainstek.v7i1.315.

A. Syarifah, A. A. Riadi, and A. Susanto, “Klasifikasi Tingkat Kematangan Jambu Bol Berbasis Pengolahan Citra Digital Menggunakan Metode K-Nearest Neighbor,” vol. 7, no. 1, pp. 27–35, 2022.

J. Khatib, S. Dalam, M. K. Neighbor, and K. N. N. Berbasis, “Indonesian Journal of Computer Science,” vol. 12, no. 1, pp. 656–664, 2023.

S. Ani, M. Furqan, and R. S. TP. Bolon, “Deteksi Tepi Pola Tulisan Arab Menggunakan Metode Canny pada Nisan Kuno di Sumatera Utara,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 6, no. 1, p. 86, 2023, doi: 10.53513/jsk.v6i1.7385.

M. Afriansyah, Joni Saputra, V. Y. P. Ardhana, and Yuan Sa’adati, “Algoritma Naive Bayes Yang Efisien Untuk Klasifikasi Buah Pisang Raja Berdasarkan Fitur Warna,” J. Inf. Syst. Manag. Digit. Bus., vol. 1, no. 2, pp. 236–248, 2024, doi: 10.59407/jismdb.v1i2.438.

V. Feriska Amalia and R. Rahma Dewi, “Penilaian Kesegaran Ikan Dengan Metode K-Nearest Neighbor Dan Pengolahan Citra Digital,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 4, pp. 7823–7829, 2024, doi: 10.36040/jati.v8i4.10441.

A. I. Masruroh, . S., and A. Syauqi, “Klasifikasi Tingkat Kematangan Buah Pepaya California Dalam Ruang Warna Hsv (Hue Saturation Value) Dengan Algoritma K-Nearest Neighbors,” J. Inform. dan Ris., vol. 1, no. 1, pp. 9–14, 2023, doi: 10.36308/iris.v1i1.470.

Y. G. Lestari and H. Irsyad, “Penggunaan Metode SVM Dengan Fitur HSV HOG Dalam Mengklasifikasi Jenis Ikan Guppy,” J. Algoritm., vol. 4, no. 1, pp. 21–30, 2023, doi: 10.35957/algoritme.xxxx.

M. A. Lutfia, F. X. A. Setyawan, S. Alam, T. Yulianti, and H. Fitriawan, “Implementasi Ekstraksi Fitur Menggunakan Gray Level Co-Occurrence Matrices (GLCM) dan K-Nearest Neighbor (K-NN) Untuk Klasifikasi Jenis Kain Dasar,” Semin. Nas. Tek. Elek, pp. 3–8, 2023.

Y. A. Prasaja, “Perbandingan Metode Glcm Dan Lbp Dalam Klasifikasi Jenis Kayu,” Indexia, vol. 4, no. 2, p. 61, 2022, doi: 10.30587/indexia.v4i2.4292.

M. Furqon, S. Sriani, and L. S. Harahap, “Klasifikasi Daun Bugenvil Menggunakan Gray Level Co-Occurrence Matrix Dan K-Nearest Neighbor,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 6, no. 1, p. 22, 2020, doi: 10.24014/coreit.v6i1.9296.

I. M. Ade Prayoga, G. Indrawan, and D. G. Hendra Divayana, “Pengelompokan Laras Suara Berdasarkan Pepatutan Atau Pathet Gamelan Bali Menggunakan Klasifikasi K-Nearest Neighbor Dan Support Vector Machine,” Technomedia J., vol. 8, no. 2SP, pp. 151–161, 2023, doi: 10.33050/tmj.v8i2sp.2011.

A. Rizal Efendi, I. N. Farida, M. A. Dusea, and W. Dara, “Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) 954 Penerapan Metode KNN Untuk Mendeteksi Hama dan Penyakit Pada Tanaman Mangga,” Agustus, vol. 7, pp. 2549–7952, 2023.

M. Furqan, Y. R. Nasution, and A. N. Siregar, “Penerapan Sistem Pakar Diagnosis Peradangan Pulpa Gigi Dengan Metode Certainty Factor,” Technol. J. Ilm., vol. 14, no. 2, p. 152, 2023, doi: 10.31602/tji.v14i2.10448.

Y. R. Nasution and A. Raja, “PENERAPAN METODE SIMPLE MULTI ATRIBUTE RATING TEHNIQUE DAN ALGORITMA K- NEAREST NEIGHBOR Prodi Ilmu Komputer , Fakultas Sains Dan Teknologi , Universitas Islam Negeri Sumatera Utara,” J. Sci. Soc. Res., vol. 4307, no. February, pp. 61–65, 2021.

Published
2024-12-30
How to Cite
Siti Saniah, & Mhd. Furqan. (2024). Classification Of Rice Plant Diseases Using K-Nearest Neighbor Algorithm Based On Hue Saturation Value Color Extraction And Gray Level Co-Occurrence Matrix Features. JURNAL TEKNOLOGI DAN OPEN SOURCE, 7(2), 212 - 223. https://doi.org/10.36378/jtos.v7i2.3972
Abstract viewed = 0 times
PDF downloaded = 0 times