Application of the C4.5 Algorithm for Predicting Banana Chips Production Demand (Case Study at UD. Sinar Sejahtera Medan)
Abstract
The rapid advancement of science and technology significantly impacts various aspects of life, including business operations. Technology plays a vital role in providing information and simplifying human tasks, addressing challenges faced by growing companies, particularly in managing sales fluctuations. Factors such as market competition, product quality, and consumer interest are critical for evaluating and improving sales strategies. UD. Sinar Sejahtera Medan, a food processing industry specializing in banana chips, faces challenges such as fluctuating raw material supply, impacting production and sales. To address this, a prediction system for raw material demand was developed, leveraging the C4.5 algorithm. The C4.5 algorithm was selected for its ability to generate decision trees from historical data, providing interpretable results and high accuracy in forecasting categorical outcomes. By analyzing past trends in raw material availability and usage, the algorithm predicts future supply needs, optimizing production planning and supporting sustainable business operations. This study's findings are expected to align with previous research, offering insights for better production and sales management.
Downloads
References
R. T. Aldisa and P. Maulana, "Analisis sentimen opini masyarakat terhadap vaksinasi booster Covid-19 dengan perbandingan metode Naive Bayes, Decision Tree dan SVM," Building of Informatics, Technology and Science (BITS), vol. 4, no. 1, pp. 106–109, 2022. doi: 10.47065/bits.v4i1.1581.
R. Amaliyyah, "Title," February, p. 6, 2021.
A. Armansyah and R. K. Ramli, "Model prediksi kelulusan mahasiswa tepat waktu dengan metode Naïve Bayes," Edumatic: Jurnal Pendidikan Informatika, vol. 6, no. 1, pp. 1–10, 2022. doi: 10.29408/edumatic.v6i1.4789.
N. M. A. J. Astari, D. G. H. Divayana, and G. Indrawan, "Analisis sentimen dokumen Twitter mengenai dampak virus Corona menggunakan metode Naive Bayes Classifier," Jurnal Sistem dan Informatika (JSI), vol. 15, no. 1, pp. 27–29, 2020. doi: 10.30864/jsi.v15i1.332.
M. R. Fahlevvi, "Analisis sentimen terhadap ulasan aplikasi pejabat pengelola informasi dan dokumentasi kementerian dalam negeri republik Indonesia di Google Playstore menggunakan metode Support Vector Machine," Jurnal Teknologi dan Komunikasi Pemerintahan, vol. 4, no. 1, pp. 1–13, 2022. doi: 10.33701/jtkp.v4i1.2701.
F. Wulandari, E. Haerani, M. Fikry, and E. Budianita, "Analisis sentimen larangan penggunaan obat sirup menggunakan algoritma Naive Bayes Classifier," Jurnal Coscitech (Computer Science and Information Technology), vol. 4, no. 1, pp. 88–96, 2023. doi: 10.37859/coscitech.v4i1.4781.
M. Furqan, S. Sriani, and S. M. Sari, "Analisis sentimen menggunakan K-Nearest Neighbor terhadap new normal masa Covid-19 di Indonesia," Techno.Com, vol. 21, no. 1, pp. 51–60, 2022. doi: 10.33633/tc.v21i1.5446.
D. G. Nugroho, Y. H. Chrisnanto, A. Wahana, and F. Matematika, "Analisis sentimen pada jasa ojek online menggunakan metode Naïve Bayes," unpublished.
H. Irsyad, A. Farisi, and M. R. Pribadi, "Klasifikasi opini masyarakat terhadap jasa ISP MyRepublic dengan Naïve Bayes," JNTETI, vol. 8, no. 1, 2019. Available: https://t.co/q3btia6mof.
M. Luqman, "Keamanan perangkat lunak pada bahasa pemrograman Node.js untuk aplikasi berbasis web," Institut Teknologi Bandung, 2016.
S. Mandasari, B. H. Hayadi, and R. Gunawan, "Nomor 2," Volume, vol. 5, pp. 118–126, 2022. Available: https://ojs.trigunadharma.ac.id/index.php/jsk/index.
I. Nabillah and I. Ranggadara, "Mean absolute percentage error untuk evaluasi hasil prediksi komoditas laut," JOINS (Journal of Information System), vol. 5, no. 2, pp. 250–255, 2020. doi: 10.33633/joins.v5i2.3900.
D. Nugraha and D. Gustian, "Analisis sentimen penggunaan aplikasi transportasi online pada ulasan Google Play Store dengan metode Naive Bayes Classifier," unpublished.
S. Nurul, J. Fitriyyah, N. Safriadi, E. Esyudha, and P. #3, "Analisis sentimen calon presiden Indonesia 2019 dari media sosial Twitter menggunakan metode Naive Bayes," JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 5, no. 3, pp. 279–285, 2019.
L. Oktasari, Y. H. Chrisnanto, R. Program, S. Informatika, F. Matematika, P. Pengetahuan, and J. A. Yani, "Text mining dalam analisis sentimen asuransi menggunakan metode Naïve Bayes Classifier," unpublished.
M. I. Petiwi, A. Triayudi, and I. D. Sholihati, "Analisis sentimen GoFood berdasarkan Twitter menggunakan metode Naïve Bayes dan Support Vector Machine," Jurnal Media Informatika Budidarma, vol. 6, no. 1, p. 542, 2022. doi: 10.30865/mib.v6i1.3530.
G. Pringgo Digdo, Modul Lengkap JavaScript, 2015.
M. Radhi, D. R. H. Sitompul, S. H. Sinurat, and E. Indra, "Analisis big data dengan metode exploratory data analysis (EDA) dan metode visualisasi menggunakan Jupyter Notebook," Jurnal Sistem Informasi dan Ilmu Komputer Prima, vol. 4, no. 2, 2021.
G. T. Santoso, "Analisis sentimen pada tweet dengan tagar #BPJSrasarentenir menggunakan metode Support Vector Machine (SVM)," pp. 12–13, 2021.
F. V. Sari and A. Wibowo, "Analisis sentimen pelanggan toko online JD.ID menggunakan metode Naïve Bayes Classifier berbasis konversi ikon emosi," Jurnal Simetris, vol. 10, no. 2, 2019.
G. I. E. Soen, Marlina, and Renny, "Implementasi cloud computing dengan Google Colaboratory pada aplikasi pengolah data Zoom Participants," Journal Informatic Technology and Communication, vol. 6, no. 1, pp. 24–30, 2022.
A. Syakuro, "Analisis sentimen masyarakat terhadap e-commerce pada media sosial menggunakan metode Naive Bayes Classifier (NBC) dengan seleksi fitur Information Gain (IG)," unpublished.
M. Syarifuddin, "Analisis sentimen opini publik mengenai Covid-19 pada Twitter menggunakan metode Naïve Bayes dan KNN," INTI Nusa Mandiri, vol. 15, no. 1, pp. 23–28, 2020. doi: 10.33480/inti.v15i1.1347.
W. Yulita, E. D. Nugroho, M. H. Algifari, P. Studi Teknik Informatika, I. Teknologi Sumatera, J. Terusan Ryacudu, W. Huwi, J. Agung, and L. Selatan, "Analisis sentimen terhadap opini masyarakat tentang vaksin Covid-19 menggunakan algoritma Naïve Bayes Classifier," JDMSI, vol. 2, no. 2, pp. 1–9, 2021.
P. Yuniar and Kismiantini, "Analisis sentimen ulasan pada Gojek menggunakan metode Naive Bayes," Statistika, vol. 23, no. 2, pp. 164–175, 2023. doi: 10.29313/statistika.v23i2.2353.
I. Zufria and N. Fadhillah, "Prediksi penjualan ikan dengan metode fuzzy time series," Journal of Science and Social Research, no. 3, 2024. Available:
Copyright (c) 2024 M. Teguh wijaya, Rakhmat Kurniawan R
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.