Implementation of Data Mining in Measuring Student Satisfaction at IAIN Kerinci

  • Rian Rafiska IAIN Kerinci
Keywords: Data Mining, Satisfaction, Students

Abstract

Measuring student satisfaction is crucial, especially considering the increasing competition in the field of education along with the advancement of knowledge and technology. It is essential to assess whether the services expected by students align with the services they actually receive. Evaluating student satisfaction can significantly help higher education institutions improve service quality, which in turn may lead to an increase in student enrollment.This study employs a quantitative method using one of the data mining techniques—classification—through the C4.5 algorithm to measure student satisfaction levels. The population of this research includes active students at IAIN Kerinci, with a sample size of 100 respondents. The students serve as the subjects providing evaluations or opinions on variables characterized by Tangibles, Reliability, Responsiveness, Assurance, and Empathy.The data is processed using data mining classification techniques, with testing conducted through RapidMiner software. The results of the analysis and testing indicate that data mining effectively classifies the variables in measuring student satisfaction, generating 10 decision tree rules with an accuracy rate of 98.22%. These resulting rules are expected to serve as a foundation for making informed decisions on actions needed to enhance student satisfaction.

Downloads

Download data is not yet available.

References

Adhatrao, K., Gaykar, A., Dhawan, A., Jha, R., & Honrao, V. (2013). Predicting Students’ Performance Using ID3 and C4.5 Classification Algorithms. International Journal of Data Mining & Knowledge Management Process, 3(5), 39–52. https://doi.org/10.5121/ijdkp.2013.3504

Bhakti, Y. B., & Rahmawati, E. Y. (2017). Indeks Kepuasan Mahasiswa Terhadap Pelayanan Program Studi Pendidikan Matematika. Jurnal Formatif, 7(3), 272–285.

Fian, J. al, & Yuniati, T. (2016). Pengaruh Kepuasan Dan Kepercayaan Pelanggan Terhadap Loyalitas Pelanggan Auto 2000 Sungkono Surabaya. Jurnal Ilmu Dan Riset Manajemen, 5(6), 1–18.

Ginting, L. S. B., Zarman, W., & Hamidah, I. (2014). Analisis dan Penerapan Algoritma C4.5 Dalam Data Mining untuk Mempredikisi Masa Studi Mahasiswa Berdasarkan Data Nilai Akademik. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST), 263–272.

Haryati, S., Sudarsono, A., & Suryana, E. (2015). Implementasi Data Mining Untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus: Universitas Dehasen Bengkulu). Jurnal Media Infotama, 11(2), 130–138.

Hijriana, N., & Rasyidan, M. (2017). Penerapan Metode Decision Tree Algoritma C4.5 Untuk Seleksi Calon Penerima Beasiswa Tingkat Universitas. Sains Dan Teknologi, 3(1), 9–13.

Hu, R. (2013). Data Mining in the Application of Criminal Cases Based on Decision Tree. International Journal of Engineering Sciences, 2(2), 24–27.

Hutasuhut, M., Octavina, D., & Halim, J. (2019). Penerapan Data Mining dalam Menganalisa Pola Kelayakan Siswa Pada Kelas Unggulan Menggunakan Algoritma Iterative Dichotomiser 3 (ID3) pada SMP N. 2 Rantau Selatan. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 18(2), 154. https://doi.org/10.53513/jis.v18i2.154

Ina, W. T. (2013). Klasifikasi Data Rekam Medis Berdasarkan Kode Penyakit Internasional Menggunakan Algoritma C4.5. Jurnal Media Elektro, 1(3), 105–110.

Luvia, Y. S., Windarto, A. P., Solikhun, S., & Hartama, D. (2017). Penerapan Algoritma C4.5 Untuk Klasifikasi Predikat Keberhasilan Mahasiswa Di Amik Tunas Bangsa. Jurasik (Jurnal Riset Sistem Informasi Dan Teknik Informatika), 1(1), 75. https://doi.org/10.30645/jurasik.v1i1.12

Maris, E. R. (2019). Analisis Kepuasan Pelanggan Menggunakan Algoritma C4 . 5. 1–14.

Maulana, A. S. (2016). Pengaruh Kualitas Pelayanan Dan Harga Terhadap Kepuasan Pelanggan PT. TOI. Jurnal Ekonomi, 7(2), 113–125.

Mulyana, M., Effendy, M., & Hidayat, L. (2017). Membangun Kepuasan Mahasiswa Pengguna Laboratorium Komputer. Jurnal Analisis Sistem Pendidikan Tinggi “JAS-PT,” 1(2), 93–101.

Patel, B. R., & Rana, K. K. (2014). A Survey on Decision Tree Algorithm For Classification. Ijedr, 2(1), 1–5.

Rasyid, H. al. (2017). Pengaruh Kualitas Layanan Dan Pemanfaatan Teknologi Terhadap Kepuasan Dan Loyalitas Pelanggan Go-Jek. Jurnal Ecodemica, 1(2), 210–223.

Riandari, F., & Simgangunsong, A. (2019). Penerapan Algoritma C4.5 Untuk Mengukur Tingkat Kepuasan Mahasiswa.

Ridwan, M., Suyono, H., & Sarosa, M. (2013). Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. Jurnal EECCIS, 7(1), pp.59-64.

Sijabat, A. (2015). Penerapan Data Mining Untuk Pengolahan Data Siswa Dengan Menggunakan Metode Decision Tree ( Studi Kasus : Yayasan Perguruan Kristen Andreas). Majalah Ilmiah Informasi Dan Teknologi Ilmiah, V(3), 7–12.

Sulastri, T. (2016). Analisis Kepuasan Mahasiswa Terhadap Kinerja Dosen. Jurnal Ilmiah Ekonomi Manajemen Dan Kewirausahaan “OPTIMAL,” 10(2), 167–184.

Syakur, A. (2018). Hubungan Kualitas Pelayanan Terhadap Kepuasan Mahasiswa Dan Loyalitas Mahasiswa Ditinjau Dari Model Pembelajaran Di Akademi Farmasi Surabaya. REFORMASI, 8(2), 100–108. www.inherent-dikti.net

Utari, S. P. (2015). Implementasi Metode C4 . 5 Untuk Menentukan Guru Terbaik Pada Smk 1 Percut Sei Tuan Medan. Jurnal Buana Informatika, 2(April), 82–86.

Published
2025-05-30
How to Cite
Rian Rafiska. (2025). Implementation of Data Mining in Measuring Student Satisfaction at IAIN Kerinci. JURNAL TEKNOLOGI DAN OPEN SOURCE, 8(1), 27 - 34. https://doi.org/10.36378/jtos.v8i1.3997
Abstract viewed = 2 times
PDF downloaded = 1 times