Implementation of the FP-Growth Algorithm for Bundling Strategy and Store Layout Redesign at Toko Kasih Ibu
Abstract
Grocery stores like Toko Kasih Ibu face increasing challenges in staying competitive against modern markets offering better convenience, product variety, and services. A notable sales decline in 2024 highlights the need for improved marketing and store layout strategies. This study analyzes purchasing patterns using the FP-Growth algorithm within a Market Basket Analysis (MBA) framework to design product bundling and optimal layout recommendations. Using the CRISP-DM approach, 468,507 transaction records from 2022–2024 were processed, followed by data preparation and transformation. The FP-Growth model was applied with a minimum support of 2% and confidence of 50%, resulting in 11 strong association rules—such as bundling Fom Burger Per 10, Pilus SP 500 RTG BAL, and Indomie Goreng PC. Additionally, category-level analysis using the Activity Relationship Chart (ARC) with the AEIOUX scale suggested reorganizing the store into four sectors to improve customer convenience and encourage combined purchases. The findings demonstrate that applying the FP-Growth algorithm with appropriate parameters offers valuable insights for effective bundling and layout strategies, supporting promotional efforts and sales goals.
Downloads
References
S. Suwarjono, H. T. Adri, F. Hamamy, and S. Laeli, “Pengembangan Aplikasi Warung Kelontong Berbasis Android Mengunakan Framework Apache Cordova,” J. Inform. J. Pengemb. IT, vol. 6, no. 2, pp. 99–103, 2021, doi: 10.30591/jpit.v6i2.2428.
S. Mulyana, J. Wulandari, and F. Liani, “Pengaruh Pasar Modern terhadap Keberlangsungan Pasar Tradisional di Indonesia The Influence of Modern Markets on the Sustainability of Traditional Markets in Indonesia,” J. Kolaboratif Sains, vol. 7, no. 12, pp. 4689–4695, 2024, doi: 10.56338/jks.v7i12.6623.
R. Hidayat, A. S. Sunge, and L. I. Achmad, “Penerapan Data Mining Dengan Algoritma,” AKSELERATOR, vol. 5, no. 1, pp. 18–32, 2021.
D. Wulandari, B. Irawan, and A. Bahtiar, “Analisis Algoritma Apriori Untuk Mengidentifikasi Pola Penjualan Di Toko Sembako XYZ,” J. Ilmu Tek. dan Komput., vol. 08, no. 01, pp. 64–71, 2024, doi: 10.22441/jitkom.v8i1.009.
T. P. Hofsah and T. Anggoro, “Implementasi Data Mining Penjualan menggunakan Algoritma Apriori ( Studi Kasus: Toko SRC Aska Musa ),” Innov. J. Soc. Sci. Res., vol. 4, no. 6, pp. 1999–2014, 2024.
F. Zahra, M. A. Ridla, and N. Azise, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang (Studi Kasus : Toko Sinar Harahap),” JUSTIFY J. Sist. Inf. Ibrahimy, vol. 3, no. 1, pp. 55–65, 2024, doi: 10.35316/justify.v3i1.5335.
M. Risqi Ananda, N. Sandra, E. Fadhila, A. Rahma, and N. Nurbaiti, “Data Mining dalam Perusahaan PT Indofood Lubuk Pakam,” J. Ekon. Manaj. Dan Bisnis, vol. 2, no. 1, pp. 97–102, 2023, doi: 10.47467/comit.v2i1.124.
A. Hermawan, B. Wicaksono, T. Ahmadjayadi, B. S. Prakasa, and J. D. Aruan, “Implementasi Algoritma Apriori pada Market Basket Analysis terhadap Data Penjualan Produk Supermarket,” Algoritm. J. Mat. Ilmu Pengetah. Alam, Kebumian dan Angkasa, vol. 2, no. 5, 2024, [Online]. Available: https://journal.arimsi.or.id/index.php/Algoritma/article/view/137%0Ahttps://journal.arimsi.or.id/index.php/Algoritma/article/download/137/228.
H. Harianto, A. Sudianto, and H. Bahtiar, “Analisa Data Transaksi Penjualan Barang Menggunakan Algoritma Apriori dan FP-Growth,” J. Sist. Komput. dan Kecerdasan Buatan, vol. VI, no. 2, pp. 103–108, 2023.
P. Kotler and K. L. Keller, Marketing Management, 15th ed. Pearson, 2016.
E. Sonia, D. K. Yusup, N. Hartati, and M. Badriyah, “Bundling Business Model dan Implikasinya Terhadap Efektivitas Pemasaran Multi Produk Kosmetik Berlabel Halal,” 1st Int. Conf. Islam. Econ., pp. 365–372, 2024.
A. Suprayogi, N. Najibullah, S. Sewaka, S. Sulastri, and R. Ruknan, “Pengaruh Display Produk Terhadap Keputusan Pembelian Produk Alfamart Cabang Pondok Jagung Tangerang Selatan,” J. Tadbir Perad., vol. 2, no. 1, pp. 58–66, 2022, doi: 10.55182/jtp.v2i1.104.
J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. Boston, MA, USA: Morgan Kaufmann, 2012.
I. Astrina, M. Z. Arifin, and U. Pujianto, “Penerapan Algoritma FP-Growth dalam Penentuan Pola Pembelian Konsumen pada Kain Tenun Medali Mas,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 1, pp. 32–40, 2019, doi: 10.31940/matrix.v9i1.1036.
A. Serawasti, S. Wahyudi, and S. D. Surjanto, “Klasifikasi ABC dengan multi-kriteria menggunakan NG-Model untuk pengendalian persediaan,” J. Sains dan Seni POMITS, vol. 3, no. 2, pp. A46–A52, 2014.
J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation,” SIGMOD 2000 - Proc. 2000 ACM SIGMOD Int. Conf. Manag. Data, pp. 1–12, 2000, doi: 10.1145/342009.335372.
M. F. Harby, E. D. Wahyuni, and N. C. Wibowo, “Rekomendasi Strategi Penjualan Bundling Di Cafe Sz Point Menggunakan Algoritma Frequent Pattern Growth,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, pp. 2718–2725, 2024, doi: 10.23960/jitet.v12i3.4867.
E. Munanda and S. Monalisa, “Penerapan Algoritma Fp-Growth Pada Data Transaksi Penjualan Untuk Penentuan Tataletak,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 7, no. 2, pp. 173–184, 2021, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/RMSI/article/view/13253.
A. W. O. Gama, I. K. G. D. Putra, and I. P. A. Bayupati, “Implementasi Algoritma Apriori Untuk Menemukan Frequent Itemset Dalam Keranjang Belanja,” Maj. Ilm. Teknol. Elektro, vol. 15, no. 2, pp. 27–32, 2016, doi: 10.24843/mite.1502.04.
A. A. Taufiq, U. Ungkawa, and N. Fitrianti, “Penerapan Algoritma FP-Growth untuk Analisis Pola Pembelian Konsumen,” Disem. Fti, 2022, [Online]. Available: https://eproceeding.itenas.ac.id/index.php/fti/article/view/960/936.
R. A. Johan, R. Himilda, and N. Auliza, “Penerapan metode association rule untuk strategi penjualan menggunakan algoritma Apriori,” J. Teknol. Inform., vol. 2, no. 2, pp. 1–7, 2019, doi: 10.52046/j-tifa.v2i2.268.
C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Comput. Sci., vol. 181, no. 2019, pp. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.
M. Singh, A. Verma, A. Parasher, N. Chauhan, and G. Budhiraja, “Implementation of Database Using Python Flask Framework,” Int. J. Eng. Comput. Sci., vol. 8, no. 12, pp. 24890–24893, 2019, doi: 10.18535/ijecs/v8i12.4399.
R. Wirth and J. Hipp, “CRISP-DM: towards a standard process model for data mining,” Proc. Fourth Int. Conf. Pract. Appl. Knowl. Discov. Data Min., pp. 29–40, 2000, [Online]. Available: https://www.researchgate.net/publication/239585378_CRISP-DM_Towards_a_standard_process_model_for_data_mining.
J. Jamalludin, A. Fauzi, and H. Ramadhan, “Metode Activity Relationship Chart (Arc) Untuk Analisis Perencanaan Tata Letak Fasilitas Pada Bengkel Nusantara Depok,” Bull. Appl. Ind. Eng. Theory, vol. 1, no. 2, pp. 20–22, 2020.
E. Aristriyana and M. I. F. Salim, “Perancangan Ulang Tata Letak Fasilitas Menggunakan Metode Arc Guna Memaksimalkan Produktivitas Kerja Pada Ukm Sb Jaya Di Cisaga,” J. Ind. Galuh, vol. 5, no. 1, pp. 29–36, 2023, doi: 10.25157/jig.v5i1.3060.
Copyright (c) 2025 Fariz, Eka Dyar Wahyuni, Tri Luhur Indayanti Sugata

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.












