Development of a Machine Learning-Based Predictive Model for Forecasting Spare Part Requirements at the Warehouse of PT. Setia Karya Transport (Great Giant Foods) Way Lunik
Abstract
Efficient spare part management plays a crucial role in supporting operational continuity at PT. Setia Karya Transport (Great Giant Foods). The current spare part forecasting process is still reactive and relies on periodic evaluations, resulting in potential inefficiencies in procurement planning. This study aims to develop a machine learning-based predictive model to forecast spare part requirements using historical transaction data from January to July 2025. The research applied three modeling scenarios: (1) a hybrid model combining Support Vector Regression (SVR), Random Forest, and Statistical methods; (2) pure statistical methods with zero-ratio classification; and (3) the XGBoost algorithm with zero-ratio classification. Model performance was evaluated using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) metrics. The results showed that the hybrid approach achieved the best performance with an MAE of 2.919 and an RMSE of 8.056, indicating higher prediction accuracy compared to other models. The findings demonstrate that integrating machine learning with statistical approaches can effectively enhance forecasting accuracy and support data-driven decision-making in warehouse management.
Keywords : Machine Learning, Forecasting, Spare Part, Random Forest, Support Vector Regression
Downloads
References
A. I. Mohamed, “Inventory Management,” in IntechOpen, 2024, pp. 1–19. [Online]. Available: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
M. Jasri, A. Karim, and M. Nabil, “Aplikasi Sistem Manajemen Gudang Sparepart Truk Dengan Teknologi Ocr Menggunakan Framework Laravel,” SENTRI J. Ris. Ilm., vol. 2, no. 11, pp. 4988–4996, 2023, doi: 10.55681/sentri.v2i11.1853.
N. Hafidhoh, A. P. Atmaja, G. N. Syaifuddiin, I. B. Sumafta, S. M. Pratama, and H. N. Khasanah, “Machine Learning untuk Prediksi Kegagalan Mesin dalam Predictive Maintenance System,” J. Masy. Inform., vol. 15, no. 1, pp. 56–66, 2024, doi: 10.14710/jmasif.15.1.63641.
O. : Jonnius et al., “Analisis Forecasting Penjualan Produk Perusahaan”.
I. Lizandro and P. Pampa, “Machine Learning and Deep Learning for demand forecasting in Logistics : A systematic literature review Machine Learning and Deep Learning for demand review,” pp. 0–32, 2025.
L. Fan, X. Liu, W. Mao, K. Yang, and Z. Song, “Spare Parts Demand Forecasting Method Based on Intermittent Feature Adaptation”.
S. Manish Ambulgekar and P. Dashrath Mali, “Technical Review on Machine Learning,” Int. J. Eng. Appl. Sci. Technol., vol. 5, no. 6, pp. 183–187, 2020, doi: 10.33564/ijeast.2020.v05i06.026.
R. Ruliana, Z. Rais, M. Marni, and A. S. Ahmar, “Implementation of the Support Vector Regression (SVR) Method in Inflation Prediction in Makassar City,” ARRUS J. Math. Appl. Sci., vol. 4, no. 1, pp. 28–35, 2024, doi: 10.35877/mathscience2608.
A. Aryati, I. Purnamasari, and Y. N. Nasution, “Peramalan dengan Menggunakan Metode Holt-Winters Exponential Smoothing (Studi Kasus: Jumlah Wisatawan Mancanegara yang Berkunjung Ke Indonesia),” J. EKSPONENSIAL, vol. 11, no. 1, pp. 99–105, 2020.
A. K. Azis and K. Kustanto, “Penerapan Moving Average Pada Prediksi Penjualan Accu,” J. Teknol. Inf. dan Komun., vol. 11, no. 1, p. 25, 2023, doi: 10.30646/tikomsin.v11i1.722.
A. H. Zalsabila and Y. Widharto, “Usulan Peramalan Kebutuhan Dan Safety Stock Persediaan Carbon Brush Ncc G34 Dengan Croston ’ S Method Dan Syntetos-Boylan Approximation ( Studi Kasus Pltu X ),” Ind. Eng. Online J., vol. 13, pp. 1–5, 2022.
M. İfraz, A. Aktepe, S. Ersöz, and T. Çetinyokuş, “Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet,” J. Eng. Res., vol. 11, no. 2, 2023, doi: 10.1016/j.jer.2023.100057.
R. Yuniarti, “Analisa Metode Single Exponential Smoothing Sebagai Peramalan Penjualan Terhadap Penyalur Makanan (Studi Kasus : Lokatara Dimsum),” Aliansi J. Manaj. dan Bisnis, vol. 15, no. 2, pp. 29–34, 2021, doi: 10.46975/aliansi.v15i2.63.
Noviadry Nur Tamtama and Rahmawati Riantisari, “Analisis Peramalan Permintaan Melalui Metode Moving Average, Weighted Moving Average dan Exponential Smoothing (Studi Kasus Pada Exist Auto Detailing),” Primanomics J. Ekon. Bisnis, vol. 22, no. 1, pp. 109–120, 2024, doi: 10.31253/pe.v22i1.2685.
Y. K. Simamora, E. Puspita, and N. Herrhyanto, “Peramalan Jumlah Permintaan Spare Part LCV Bushing Struthbar dengan Menggunakan Metode Croston dan Metode Syntetos Boylan Approximation,” J. EurekaMatika, vol. 7, no. 1, pp. 47–57, 2019, [Online]. Available: https://vm36.upi.edu/index.php/JEM/article/view/17887/9741
A. Innayah, “Upaya Peningkatan Keterampilan Siswa Melalui Program Kelas Keterampilan TKR Di MAN 2 Ngawi,” J. Tawadhu, vol. 7, no. 1, pp. 24–32, 2023.
R. Arviyanda, E. Fernandito, and P. Landung, “Data Sekunder,” J. Harmon. Nusa Bangsa, vol. 1, no. 1, p. 67, 2023.
P. Ellis, “Research methods: qualitative observation,” Decod. Sci., vol. 20, no. 1, 2023.
K. Dunwoodie, L. Macaulay, and A. Newman, “Qualitative interviewing in the field of work and organisational psychology : Benefits , challenges and guidelines for researchers and reviewers,” no. February, pp. 863–889, 2022, doi: 10.1111/apps.12414.
W. M. Lim, “What Is Qualitative Research ? An Overview and Guidelines,” 2025, doi: 10.1177/14413582241264619.
S. P. Chand, “Methods of Data Collection in Qualitative Research : Interviews , Focus Groups , Observations , and Document Analysis Triangulation in qualitative research Interviews in qualitative research,” vol. 6, no. 1, pp. 303–317, 2025, doi: 10.25082/AERE.2025.01.001.
T. H. Utami, H. Sa, and F. Munawwarah, “Demagogi Journal of Social Sciences , Economics and Education Metode Pengumpulan Data Kualitatif,” vol. 3, no. 3, pp. 133–142, 2025.
A. A. Suryanto, “Penerapan Metode Mean Absolute Error (Mea) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi,” Saintekbu, vol. 11, no. 1, pp. 78–83, 2019, doi: 10.32764/saintekbu.v11i1.298.
F. H. Hamdanah and D. Fitrianah, “Analisis Performansi Algoritma Linear Regression dengan Generalized Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah,” J. Nas. Pendidik. Tek. Inform., vol. 10, no. 1, p. 23, 2021, doi: 10.23887/janapati.v10i1.31035.
E. Hermawan, S. Darmawan Panjaitan, and E. Faja Ripanti, “Sistem Prediksi Banjir Rob Kota Pontianak Berbasis Machine Learning Menggunakan Framework Streamlit,” J. Edukasi dan Penelit. Inform., vol. 10, no. 3, pp. 351–361, 2024.
Copyright (c) 2025 Muhamad Afdhaluddin, Lailatur Rahmi, Elsa Dwi Agresty

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.












