Analysis of Public Sentiment Towards Retired Military Officers' Pressure to Impeach the Vice President Through X Using Decision Tree
Abstract
The advancement of information technology has strengthened the analysis of social media data, particularly in understanding public opinion on national political issues. This study examines public sentiment on the X (Twitter) platform regarding the issues of Gibran’s Impeachment and the Urging by Retired Military Officers using the Decision Tree CART algorithm. Data were collected through a crawling process, resulting in 1,020 tweets for the Impeachment issue and 89 tweets for the Urging issue. After preprocessing, the dataset was labeled using a Lexicon-Based method that classifies text into positive, negative, and neutral sentiments. The evaluation results show that for the Impeachment issue, the model achieved an accuracy of 97.05%–99.51%, with the highest performance found in the Neutral class (F1-Score 98.46%). For the Urging issue, the model obtained an overall accuracy of 88.89%, with the highest performance also in the Neutral class (F1-Score 94.12%). Model performance decreased in the Positive and Negative classes due to data imbalance. Overall, the findings indicate that Decision Tree CART is effective for sentiment classification on small to medium datasets and reveal that public sentiment toward both issues is predominantly Neutral.
Downloads
References
. O. Manullang, C. Prianto, and N. H. Harani, “Analisis Sentimen Untuk Memprediksi Hasil Calon Pemilu Presiden Menggunakan Lexicon Based Dan Random Forest,” J. Ilm. Inform., vol. 11, no. 02, pp. 159–169, 2023.
. R. V. Alif, M. R. Alhafiz, and M. Fakhriza, “Perancangan Sistem Informasi Dokumen P44 (Hasil Putusan) Berbasis Web Studi Kasus Kejaksaan Negeri Deli Serdang,” J. Informatics Busisnes, vol. 1, no. 4, pp. 233–238, 2024.
. A. Heryanto and R. Pramudita, “Opini Media Sosial Facebook Terhadap Produk Hijab Menggunakan Metode Text Mining,” Inf. Syst. Educ. Prof. J. Inf. Syst., vol. 4, no. 2, pp. 168–177, 2020.
. S. Suhendra and F. S. Pratiwi, “Peran komunikasi digital dalam pembentukan opini publik: Studi kasus media sosial,” in Iapa Proceedings Conference, 2024, pp. 293–315.
. M. K. Gibran, M. I. Rifki, A. H. Hasugian, A. T. A. A. Siahaan, A. Sahputra, and R. Ong, “Sentiment Analysis of Platform X Users on Starlink Using Naive Bayes,” Instal J. Komput., vol. 16, no. 03, pp. 210–220, 2024.
. R. N. Muhammad and B. Tanggahma, “Pengaruh media sosial pada persepsi publik terhadap sistem peradilan: analisis sentimen di Twitter,” UNES Law Rev., vol. 7, no. 1, pp. 507–516, 2024.
. R. A. Kurniawan, M. S. Hasibuan, P. Piramida, and R. S. Ramadhan, “Penerapan Algoritma K-Means Untuk Clustering Tempat Makan Di Batubara,” J. Comput. Sci. Informatics Eng., vol. 1, no. 1, pp. 10–18, 2022.
. E. Fauziningrum and E. I. Sulistyaningsih, “Penerapan Data Mining Metode Decision Tree Untuk Mengukur Penguasaan Bahasa Inggris Maritim (Studi Kasus Di Universitas Maritim Amni),” J. SAINS DAN Teknol. Marit., vol. 22, no. 1, pp. 41–50, 2021.
. Y. Akbar and T. Sugiharto, “Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4. 5 dan Naïve Bayes,” J. Sains dan Teknol., vol. 5, no. 1, pp. 115–122, 2023.
. I. D. Hardyatman and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Rencana Kenaikan PPN 12% Di Indonesia Pada Media Sosial X Menggunakan Metode Decision Tree,” J. Inf. Syst. Res., vol. 6, no. 2, 2025.
. N. Agustina and U. A. Yogyakarta, “ALGORITMA DECISION TREE UNTUK ANALISIS SENTIMEN PUBLIC TERHADAP ALGORITMA DECISION TREE UNTUK ANALISIS SENTIMEN PUBLIC TERHADAP MARKETPLACE DI,” no. June 2023, 2024, doi: 10.53580/naratif.v5i1.186.
. S. K. Wardani, Y. A. Sari, and I. Indriati, “Analisis Sentimen menggunakan Metode Naïve Bayes Classifier terhadap Review Produk Perawatan Kulit Wajah menggunakan Seleksi Fitur N-gram dan Document Frequency Thresholding,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 12, pp. 5582–5590, 2021.
. D. Rifaldi and A. Fadlil, “Teknik preprocessing pada text mining menggunakan data tweet ‘mental health,’” Decod. J. Pendidik. Teknol. Inf., vol. 3, no. 2, pp. 161–171, 2023.
. E. Novalia and A. Voutama, “Black Box Testing dengan Teknik Equivalence Partitions Pada Aplikasi Android M-Magazine Mading Sekolah,” Syntax J. Inform., vol. 11, pp. 23–35, Jun. 2022, doi: 10.35706/syji.v11i01.6413.
. E. Oktafanda, N. W. Al-Hafiz, A. Latif, and F. Santosa, “Analysis and Design of Monolithic System Architecture Migration to Microservices at PT. MALINDO Conceptual Approach”, JTOS, vol. 8, no. 1, pp. 54 - 63, May 2025.
. R. Hardiartama, A. A. Arifiyanti, and Ana Wati3S. F., “Application of Ensemble Machine Learning Methods for Aspect-Based Sentiment Analysis on User Reviews of the Wondr by BNI App”, JTOS, vol. 8, no. 1, pp. 97 - 111, Jun. 2025.
. Mirza Khazim Nugraha, Nur Cahyo Wibowo, and Iqbal Ramadhani Mukhlis, “Design and Development of the Boarding House Management Information System (SIMKO) Using Laravel with Agile Methodology”, JTOS, vol. 8, no. 1, pp. 112 - 122, Jun. 2025.
. M. A. Sifaul Anam, A. Faroqi, A. Faroqi, and T. Lathif Mardi Suryanto, “Analysis of MyPertamina Application Acceptance Using a Modified Technology Acceptance Model (TAM)”, JTOS, vol. 8, no. 1, pp. 133 - 141, Jun. 2025.
. D. Handoko Putra and N. Rahditiantoro, “Implementation of Forward Chaining in a Web-Based Expert System for Passport Services”, JTOS, vol. 8, no. 1, pp. 217 - 277, Jun. 2025.
. R. A. P. Alisia, Anita Wulansari, and Rafika Rahmawati, “Analysis of Factors Influencing the Acceptance of the Indodax Application Using the UTAUT 2 Model”, JTOS, vol. 8, no. 1, pp. 317 - 327, Jun. 2025.
. H. Nopriandi, N. W. Al-Hafiz, and S. Chairani, “Analysis and Modeling of the Internal Quality Audit Information System Islamic University of Kuantan Singingi”, JTOS, vol. 8, no. 1, pp. 398 - 408, Jun. 2025.
. M. Yusfahmi, Febri Haswan, Nofri Wandi Al-Hafiz, Elgamar Syam, Helpi Nopriandi, Jasri, Aprizal, Harianja, Erlinda, Sri Chairani, Gunardi Hamzah, & Morine Delya Octa. (2025). SOSIALISASI DAN PENERAPAN APLIKASI BERBASIS TEKNOLOGI INFORMASI UNTUK MENDUKUNG TRANSFORMASI DIGITAL BUMDes TEBING TINGGI. BHAKTI NAGORI (Jurnal Pengabdian Kepada Masyarakat), 5(2), 712 - 719. https://doi.org/10.36378/bhakti_nagori.v5i2.4910
. R. Nazli, A. Amrizal, H. Hendra, and S. Syukriadi, “Modeling User Interface Design E-Business Applications for Marketing Umkm Products in Payakumbuh City Using Pieces Framework”, JTOS, vol. 7, no. 2, pp. 55 - 66, Nov. 2024.
. M. Syamsul Azis and H. Basri, “Building A Powerfull File Specification Application For Database System Design”, JTOS, vol. 7, no. 2, pp. 103 - 109, Dec. 2024.
. Nofri Wandi Al-Hafiz, Helpi Nopriandi, and Harianja, “Design of Rainfall Intensity Measuring Instrument Using IoT-Based Microcontroller”, JTOS, vol. 7, no. 2, pp. 202 - 211, Dec. 2024.
Copyright (c) 2026 Dimas Andrean Andrean, Rakhmat Kurniawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.












