Implementation of Data Mining of Organic Vegetable Sales With Apriori Algorithm

  • Ahmad Fauzi
  • Andika Bayu Hasta Yanto
  • Novita Indriyani
Keywords: Data Mining, Apriori Algorithm, Organic vegetable sales

Abstract

In the modern organic vegetable sector, the author observes that there is very tight business competition. Therefore, an effective approach is essential to attract buyers, although restricted sources of new information are one of the hurdles in establishing this business.Association rules are expressed with numerous features that are commonly referred to as (affinity analysis) or (market basket analysis. It was discovered that if consumers buy curly red chilies, they are also inclined to buy cayenne pepper with a 100% confidence level. Likewise, if people buy kale and red curly chiles, they are more likely to buy cayenne pepper with a 100% confidence level. This also applies if consumers buy tomatoes and curly red chilies with a 100% confidence level. In addition, other associations were also observed, such as if consumers buy curly red chilies, they prefer to buy tomatoes with a confidence level of 86%, or if they buy tomatoes and bird's eye chilies, they tend to buy curly red chiles with an 86% confidence level.Likewise, if people buy both cayenne pepper and red curly chili, they are more likely to buy tomatoes with an 86% confidence level. Finally, if customers buy kale and cayenne pepper, they are also likely to buy red curly chilies at an 83% confidence level. Based on the data acquired from this study, it is intended to obtain information about combinations of organic veggies that consumers typically buy together in each transaction, with the intention of improving organic vegetable yields and devising appropriate sales tactics.

Downloads

Download data is not yet available.

References

S. Kanti and R. E. Indrajit, “Implementasi Data Mining Penjualan Handphone Oppo Store Sdc Tanggerang Dengan Algoritma Appriori,” Implementasi Data Min. Penjualan Handphone Oppo Store Sdc Tanggerang Dengan Algoritm. Appriori, no. November, pp. 1–2, 2017.

G. Gunadi and D. I. Sensuse, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( Fp-Growth ) :,” Telematika, vol. 4, no. 1, pp. 118–132, 2012.

A. Prasetyo, R. Sastra, and N. Musyaffa, “Implementasi Data Mining Untuk Analisis Data Penjualan Dengan Menggunakan Algoritma Apriori (Studi Kasus Dapoerin’S),” J. Khatulistiwa Inform., vol. 8, no. 2, 2020, doi: 10.31294/jki.v8i2.8994.

A. R. Riszky and M. Sadikin, “Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan,” J. Teknol. dan Sist. Komput., vol. 7, no. 3, pp. 103–108, 2019, doi: 10.14710/jtsiskom.7.3.2019.103-108.

F. Rahmawati and N. Merlina, “Metode Data Mining Terhadap Data Penjualan Sparepart Mesin Fotocopy Menggunakan Algoritma Apriori,” PIKSEL Penelit. Ilmu Komput. Sist. Embed. Log., vol. 6, no. 1, pp. 9–20, 2018, doi: 10.33558/piksel.v6i1.1390.

E. D. Sikumbang, “Penerapan Data Mining Dengan Algoritma Apriori,” J. Tek. Komput. AMIK BSI, vol. 9986, no. September, pp. 1–4, 2018.

R. Takdirillah, “Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan,” Edumatic J. Pendidik. Inform., vol. 4, no. 1, pp. 37–46, 2020, doi: 10.29408/edumatic.v4i1.2081.

L. Kurniawati, A. E. Kusuma, and B. Dewansyah, “Implementasi Algoritma Apriori Untuk Menentukan Persediaan Spare Part Compressor,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 6, 2019, doi: 10.24114/cess.v4i1.11303.

S. Sinaga and A. M. Husein, “Penerapan Algoritma Apriori dalam Data Mining untuk Memprediksi Pola Pengunjung pada Objek Wisata Kabupaten Karo,” J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 1, pp. 49–54, 2019, doi: 10.34012/jutikomp.v2i1.461.

I. Maryani, O. Revianti, H. M. Nur, and S. Sunanto, “Implementasi Data Mining Pada Penjualan Di Toko GOC Kosmetik Dengan Menggunakan Metode Algoritma Apriori,” Indones. J. Softw. Eng., vol. 8, no. 1, pp. 92–98, 2022, doi: 10.31294/ijse.v8i1.13017.

I. M. D. P. Asana, I. G. I. Sudipa, A. A. T. W. Mayun, N. P. S. Meinarni, and D. V. Waas, “Aplikasi Data Mining Asosiasi Barang Menggunakan Algoritma Apriori-TID,” INFORMAL Informatics J., vol. 7, no. 1, p. 38, 2022, doi: 10.19184/isj.v7i1.30901.

Susilo and A. A. Tri, “Penerapan Algoritma Apriori pada Pengolahan Data Transaksi Penjualan di Minimarket Priyo Kota Lubuklinggau,” Jtksi, vol. 01, no. 03, pp. 39–46, 2018.

S. Aisyah and N. Normah, “Penerapan Algoritma Apriori Terhadap Data Penjualan Di Swalayan Koperasi Bappenas Jakarta Pusat,” Paradig. - J. Komput. dan Inform., vol. 21, no. 2, pp. 235–242, 2019, doi: 10.31294/p.v21i2.6205.

H. Santoso, I. P. Hariyadi, and Prayitno, “Data Mining Analisa Pola Pembelian Produk,” Tek. Inform., no. 1, pp. 19–24, 2016, [Online]. Available: http://ojs.amikom.ac.id/index.php/semnasteknomedia/article/download/1267/1200.

H. Kusumo, E. Sediyono, and M. Marwata, “Analisis Algoritma Apriori untuk Mendukung Strategi Promosi Perguruan Tinggi,” Walisongo J. Inf. Technol., vol. 1, no. 1, p. 49, 2019, doi: 10.21580/wjit.2019.1.1.4000.

A. F. Lestari and M. Hafiz, “Penerapan Algoritma Apriori Pada Data Penjualan Barbar Warehouse,” INOVTEK Polbeng - Seri Inform., vol. 5, no. 1, p. 96, 2020, doi: 10.35314/isi.v5i1.1317.

N. Agustiani, D. Suhendro, W. Saputra, and S. Tunas Bangsa Pematangsiantar, “Penerapan Data Mining Metode Apriori Dalam Implementasi Penjualan Di Alfamart,” Pros. Semin. Nas. Ris. Dan Inf. Sci., vol. 2, pp. 300–304, 2020.

S. Nurajizah, “Analisa Transaksi Penjualan Obat menggunakan Algoritma Apriori,” INOVTEK Polbeng - Seri Inform., vol. 4, no. 1, p. 35, 2019, doi: 10.35314/isi.v4i1.938.

I. Zulfa, R. Rayuwati, and K. Koko, “Implementasi data mining untuk menentukan strategi penjualan buku bekas dengan pola pembelian konsumen menggunakan metode apriori,” Tek. J. Sains dan Teknol., vol. 16, no. 1, p. 69, 2020, doi: 10.36055/tjst.v16i1.7601.

A. O. Br Ginting, “Penerapan Data Mining Korelasi Penjualan Spare Part Mobil Menggunakan Metode Algoritma Apriori (Studi Kasus: CV. Citra Kencana Mobil),” J. Inf. Technol., vol. 1, no. 2, pp. 70–77, 2021, doi: 10.32938/jitu.v1i2.1472.

C. Adiwihardja et al., “Implementasi Data Mining Penjualan Kosmetik Pada Toko Zahrani Menggunakan Algoritma Apriori,” J. Speed-Sentra Penelit. Eng. dan Edukasi, vol. 11, no. 2, pp. 1–7, 2019.

I. F. P. Ginting, D. Saripurna, and E. Fitriani, “Penerapan Data Mining Dalam Menentukan Pola Ketersediaan Stok Barang Berdasarkan Permintaan Konsumen Di Chykes Minimarket Menggunakan Algoritma Apriori,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 20, no. 1, p. 28, 2021, doi: 10.53513/jis.v20i1.2504.

A. A. Christyan Putra, H. Haryanto, and E. Dolphina, “Implementasi Metode Association Rule Mining Dengan Algoritma Apriori Untuk Rekomendasi Promo Barang,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 10, no. 2, p. 93, 2021, doi: 10.22303/csrid.10.2.2018.90-100.

M. Arifin, “Implementasi Data Mining Pada Prediksi Pemesanan Menggunakan Algoritma Apriori (Studi Kasus : Kimia Farma),” J. Pelita Inform., vol. 8, no. 3, pp. 353–356, 2020.

S. Syahriani, “Penerapan Data Mining Untuk Menentukan Pola Penjualan Sepatu Menggunakan Metode Algoritma Apriori,” Bina Insa. Ict J., vol. 9, no. 1, p. 43, 2022, doi: 10.51211/biict.v9i1.1758.

Published
2023-06-22
Abstract viewed = 182 times
PDF downloaded = 117 times

Most read articles by the same author(s)