Application of Deep Learning Algorithm to Detect Fraud in Online Transaction Networks

  • Ridwan Dwi Irawan Universitas Duta Bangsa Surakarta
  • Agus Fatkhurohman
Keywords: Deep Learning, Fraud, Long Short-Term Memory, Convolutional Neural Network

Abstract

Online transaction fraud is a severe problem that may cost businesses and people a lot of money. This paper suggests using deep learning algorithms to detect fraud as a remedy to this issue. These algorithms were chosen based on their ability to handle large amounts of intricate data and identify patterns that are difficult to identify using traditional techniques. Important components of this research include gathering and preprocessing transaction data, creating deep learning models, and assessing model performance. This investigation examines a variety of financial transaction types that may have involved fraud. The deep learning approach uses deep neural network designs, including Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN), to maximize detection accuracy. The study's findings demonstrate that the deep learning models created are excellent at identifying questionable transactions and can lower the false positive rate, which raises the overall effectiveness of fraud detection systems. As a result, deep learning algorithms have demonstrated a high degree of efficacy in identifying fraudulent activity inside internet-based transaction networks, so they play a vital role in fraud prevention.

Downloads

Download data is not yet available.

References

F. Zamachsari, N. P.-S. dan T. Informasi), and undefined 2021, “Penerapan Deep Learning dalam Deteksi Penipuan Transaksi Keuangan Secara Elektronik,” jurnal.iaii.or.idF Zamachsari, N PuspitasariJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 2021•jurnal.iaii.or.id, Accessed: Nov. 11, 2024. [Online]. Available: https://jurnal.iaii.or.id/index.php/RESTI/article/view/2952

E. Waty, I. Sulistiana, E. Siskawati, L. Judijanto, and I. Maghfur, AKUNTANSI DIGITAL: Transformasi pembukuan di era revolusi industri 4.0 menuju society 5.0. 2023. Accessed: Nov. 11, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=b43pEAAAQBAJ&oi=fnd&pg=PA16&dq=+Penerapan+LSTM+dalam+Mendeteksi+Penipuan+Transaksi+Perbankan.+Jurnal+Teknik+Informatika+dan+Sistem+Informasi,+8(2),+34-48.&ots=gyid7wL8TO&sig=QNOoA7WHAzVs4-sEuc4SBrC8vNw

E. S. Budi, A. N. Chan, P. P. Alda, and Muh. A. F. Idris, “Optimasi Model Machine Learning untuk Klasifikasi dan Prediksi Citra Menggunakan Algoritma Convolutional Neural Network,” Resolusi : Rekayasa Teknik Informatika dan Informasi, vol. 4, no. 5, pp. 502–509, May 2024, doi: 10.30865/RESOLUSI.V4I5.1892.

R. P.-J. D. Data and undefined 2024, “PENERAPAN MACHINE LEARNING DALAM DETEKSI KECURANGAN PADA TRANSAKSI KEUANGAN ONLINE,” pustakailmu.idRA PutraJurnal Dunia Data, 2024•pustakailmu.id, Accessed: Nov. 11, 2024. [Online]. Available: http://www.pustakailmu.id/index.php/duniadata/article/view/87

B. Tarissa, T. D.-D. J. of Accounting, and undefined 2024, “PENERAPAN MACHINE LEARNING DAN DEEP LEARNING PADA PENINGKATAN DETEKSI CREDIT CARD FRAUD-A SYSTEMATIC LITERATURE REVIEW,” ejournal3.undip.ac.id, Accessed: Nov. 11, 2024. [Online]. Available: https://ejournal3.undip.ac.id/index.php/accounting/article/view/46092

L. Mahya, T. Tarjo, … Z. S.-J. R. A., and undefined 2023, “Intelligent Automation Of Fraud Detection And Investigation: A Bibliometric Analysis Approach,” ejournal.umm.ac.id, Accessed: Nov. 11, 2024. [Online]. Available: https://ejournal.umm.ac.id/index.php/jrak/article/view/28487

F. Zamachsari and N. Puspitasari, “Penerapan Deep Learning dalam Deteksi Penipuan Transaksi Keuangan Secara Elektronik,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 203–212, Apr. 2021, doi: 10.29207/RESTI.V5I2.2952.

R. P.-J. D. Data and undefined 2024, “PENERAPAN MACHINE LEARNING DALAM DETEKSI KECURANGAN PADA TRANSAKSI KEUANGAN ONLINE,” pustakailmu.id, Accessed: Nov. 11, 2024. [Online]. Available: http://www.pustakailmu.id/index.php/duniadata/article/view/87

S. Prasetyo, T. D.-D. J. of Accounting, and undefined 2024, “Penerapan Machine Learning, Deep Learning, Dan Data Mining Dalam Deteksi Kecurangan Laporan Keuangan-A Systematic Literature Review,” ejournal3.undip.ac.id, Accessed: Nov. 11, 2024. [Online]. Available: https://ejournal3.undip.ac.id/index.php/accounting/article/view/46146

U. Kolbia, N. D.-J. I. Informatika, and undefined 2024, “ANALISIS KECURANGAN DALAM MENGHADAPI PENIPUAN DI SITUS E-COMMERCE MENGGUNAKAN RANDOM FOREST; PENDEKATAN MACHINE LEARNING,” ejournal.gunadarma.ac.id, Accessed: Nov. 11, 2024. [Online]. Available: https://ejournal.gunadarma.ac.id/index.php/infokom/article/view/11787

S. S. SupriyantoN. & P. D. K. Nurmalitasari, LQ45 stock price predictions using the deep learning method, vol. Int J Adv Res Publ. 2020.

A. Wibiyanto, A. W.-S. S. K. dan, and undefined 2023, “Penerapan Algoritma Multiclass Support Vector Machine dan TF-IDF Untuk Klasifikasi Topik Tugas Akhir,” jom.fti.budiluhur.ac.idADD Wibiyanto, A WibowoSKANIKA: Sistem Komputer dan Teknik Informatika, 2023•jom.fti.budiluhur.ac.id, Accessed: Nov. 11, 2024. [Online]. Available: https://jom.fti.budiluhur.ac.id/index.php/SKANIKA/article/view/2999

Published
2024-12-29
How to Cite
Ridwan Dwi Irawan, & Agus Fatkhurohman. (2024). Application of Deep Learning Algorithm to Detect Fraud in Online Transaction Networks. JURNAL TEKNOLOGI DAN OPEN SOURCE, 7(2), 167 - 177. https://doi.org/10.36378/jtos.v7i2.3890
Abstract viewed = 0 times
PDF downloaded = 0 times