Performance Comparison of K-Means Algorithm and BIRCH Algorithm in Clustering Earthquake Data in Indonesia with Web-Based Map Visualization

  • Baromim Triwijaya Universitas PGRI Semarang
  • Setyoningsih Wibowo Universitas PGRI Semarang
  • Nur Latifah Dwi Mutiara Sari Universitas PGRI Semarang
Keywords: Clustering, Earthquake, K-Means, BIRCH, Website

Abstract

This study applies the K-Means and BIRCH algorithms to cluster earthquake data in Indonesia based on geographic coordinates (latitude and longitude), depth, and magnitude from 2008 to 2023. Due to its position at the intersection of three major tectonic plates, Indonesia is highly prone to earthquakes, making the mapping of vulnerable regions essential for disaster risk reduction. K-Means is selected for its simplicity and clustering effectiveness, while BIRCH is known for its scalability and efficiency in processing large datasets. The clustering process involves data preprocessing and normalization, followed by determining the optimal number of clusters using the Elbow method. Initial findings indicate that K-Means produces more distinct and well-separated clusters than BIRCH, with Silhouette Scores of 0.3501 and 0.2247, respectively. However, after expanding the dataset to 121,123 records and incorporating additional attributes such as mag_type, phasecount, and azimuth_gap, BIRCH demonstrated a significant improvement in performance, achieving a Silhouette Score of 0.3489—surpassing K-Means, which dropped to 0.1293. These results suggest that BIRCH is more effective for clustering large and complex datasets. The final clustering results are visualized on a web-based map to support spatial analysis and the identification of earthquake-prone zones.

Downloads

Download data is not yet available.

References

B. T. Ujianto and Amar Rizqi Afdholy, “Kearifan Lokal Dalam Desain Tahan Gempa: Studi Komparatif Rumah Tradisional Di Wilayah Indonesia Barat,” Pawon J. Arsit., vol. 8, no. 02, pp. 255–272, Jul. 2024, doi: 10.36040/pawon.v8i02.10768.

Program Studi PWK Universitas Teknologi Yogyakarta and B. V. T. Dewi, “Pemetaan Perubahan Kondisi Sosial Ekonomi Masyarakat Pasca Gempa Bumi di Kecamatan Tanjung, Kabupaten Lombok Utara,” Tata Kota Dan Drh., vol. 12, no. 2, pp. 83–93, Dec. 2020, doi: 10.21776/ub.takoda.2020.012.02.5.

T. S. Chairani, H. Listia, S. Wardaniah, S. Wulandari, P. T. Agustina, and A. Piliang, “Klasterisasi Daerah Kriminalitas Di Indonesia Dengan Metode K-Means Clustering,” 2024.

I. Saleh, G. Mandar, and J. Noh, “Analisis Data Gempa Di Maluku Utara Menggunakan Algoritma K-Means Dan Liner Regression,” . September, vol. 16, no. 2, 2023.

N. Dwitiyanti, S. A. Kumala, and S. D. Handayani, “Penerapan Metode K-Means Pada Klasterisasi Wilayah Rawan Gempa Di Indonesia”.

D. P. Az-Zahra, Y. S. Sidabutar, and A. J. M. Khan, “Implementasi Algoritma Birch Dalam Klasterisasi Kasus Biaya Hidup Di Kota Pada Beberapa Negara”.

D. Malik, I. M. Artha Agastya, A. Y. Anjaya, Kusrini, and S. Hartantyo, “Earthquake Distribution Mapping in Indonesia Using K-Means Clustering Algorithm,” in 2024 8th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia: IEEE, Aug. 2024, pp. 499–504. doi: 10.1109/ICITISEE63424.2024.10730706.

A. R. Rizalde, H. A. Mubarak, G. Ramadhan, and Mohd. A. Fatan, “Comparison of K-Means, BIRCH and Hierarchical Clustering Algorithms in Clustering OCD Symptom Data,” Public Res. J. Eng. Data Technol. Comput. Sci., vol. 1, no. 2, pp. 102–108, Feb. 2024, doi: 10.57152/predatecs.v1i2.1106.

Y. Rifa’i, “Analisis Metodologi Penelitian Kulitatif dalam Pengumpulan Data di Penelitian Ilmiah pada Penyusunan Mini Riset,” Cendekia Inov. Dan Berbudaya, vol. 1, no. 1, pp. 31–37, Jun. 2023, doi: 10.59996/cendib.v1i1.155.

BMKG and USGS, “Earthquakes in Indonesia.” Kaggle. doi: 10.34740/KAGGLE/DSV/11641367.

A. E. Satriatama et al., “Analisis Klaster Data Pasien Diabetes untuk Identifikasi Pola dan Karakteristik Pasien,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 5, no. 3, pp. 172–182, Jul. 2023, doi: 10.47233/jteksis.v5i3.828.

A. N. Haya and M. Y. Ramme, “Penerapan Algoritma Stacking Ensemble Machine Learning Berbasis Pohon untuk Prediksi Penyakit Diabetes,” Pros. Semin. Nas. SAINS DATA, vol. 4, no. 1, pp. 954–961, Oct. 2024, doi: 10.33005/senada.v4i1.388.

H. Hidayat, A. Sunyoto, and H. Al Fatta, “Klasifikasi Penyakit Jantung Menggunakan Random Forest Clasifier,” J. SISKOM-KB Sist. Komput. Dan Kecerdasan Buatan, vol. 7, no. 1, pp. 31–40, Oct. 2023, doi: 10.47970/siskom-kb.v7i1.464.

P. Suwito and H. Henny, “Clustering Penilaian Dosen Berdasarkan Indeks Kepuasan Mahasiswa,” Simtek J. Sist. Inf. Dan Tek. Komput., vol. 6, no. 2, pp. 122–127, Oct. 2021, doi: 10.51876/simtek.v6i2.104.

D. Dona and M. Rifqi, “Penerapan Metode K-Means Clustering Untuk Menentukan Status Gizi Baik Dan Gizi Buruk Pada Balita (Studi Kasus Kabupaten Rokan Hulu),” Rabit J. Teknol. Dan Sist. Inf. Univrab, vol. 7, no. 2, pp. 179–191, Jul. 2022, doi: 10.36341/rabit.v7i2.2171.

A. Kusmiran, Minarti, M. F. I. Massinai, A. Zarkasi, A. A. Maharani, and R. Desiani, “Klasifikasi Kedalaman Kejadian Gempa Menggunakan Algoritma K-Means Clustering: Studi Kasus Kejadian Gempa Di Sulawesi,” JFT J. Fis. Dan Ter., vol. 9, no. 2, pp. 79–88, Dec. 2022, doi: 10.24252/jft.v9i2.29198.

M. H. Abdurrohman, E. Haerani, F. Syafria, and L. Oktavia, “Implementasi K-Means Clustering Pada Data Pengelompokan Pendaftaran Mahasiswa Baru (Studi Kasus Universitas Abdurrab,” Rabit J. Teknol. Dan Sist. Inf. Univrab, vol. 9, no. 1, pp. 138–147, Jan. 2024, doi: 10.36341/rabit.v9i1.4255.

N. K. Zuhal, “Study Comparison K-Means Clustering dengan Algoritma Hierarchical Clustering,” vol. 1, 2022, doi: 10.29407/stains.v1i1.1495.

S. Mutiah, Y. Hasnataeni, A. Fitrianto, E. Erfiani, and L. M. R. D. Jumansyah, “Perbandingan Metode Klastering K-Means dan DBSCAN dalam Identifikasi Kelompok Rumah Tangga Berdasarkan Fasilitas Sosial Ekonomi di Jawa Barat,” Teorema Teori Dan Ris. Mat., vol. 9, no. 2, p. 247, Sep. 2024, doi: 10.25157/teorema.v9i2.16290.

F. P. Azizah, S. S. Hilabi, and A. Hananto, “Perbandingan Algoritma K-Means dan Hierarchical Untuk Klasterisasi Data Kehadiran Karyawan,” vol. 14, no. 1.

N. J. Benzer, “Balanced Iterative Reducing And Clustering Using Heirarchies(Birch),” Medium. Accessed: May 06, 2025. [Online]. Available: https://medium.com/@noel.cs21/balanced-iterative-reducing-and-clustering-using-heirachies-birch-5680adffaa58

J. Laurenso, D. Jiustian, F. Fernando, V. Suhandi, and T. H. Rochadiani, “Implementation of K-Means, Hierarchical, and BIRCH Clustering Algorithms to Determine Marketing Targets for Vape Sales in Indonesia,” J. Appl. Inform. Comput., vol. 8, no. 1, pp. 62–70, Jul. 2024, doi: 10.30871/jaic.v8i1.4871.

G. M. M. Sujak, H. N. Rofiq, and F. I. Tawakal, “Implementasi K-Means Clustering untuk Optimalisasi Anggaran Penyakit Tidak Menular: Implementation of K-Means Clustering for Optimizing Non-Communicable Disease Budgets,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 5, no. 1, pp. 67–74, Nov. 2024, doi: 10.57152/malcom.v5i1.1597.

E. Ramadanti and M. Muslih, “Penerapan Data Mining Algoritma K-Means Clustering Pada Populasi Ayam Petelur Di Indonesia,” Rabit J. Teknol. Dan Sist. Inf. Univrab, vol. 7, no. 1, pp. 1–7, Jan. 2022, doi: 10.36341/rabit.v7i1.2155.

P. D. R. SARI, “Pengelompokan Tingkat Penjualan Smartphone Toko Offline Menggunakan Algoritma Birch Clustering,” S1, Universitas Malikussaleh, 2024. Accessed: May 21, 2025. [Online]. Available: https://rama.unimal.ac.id/id/eprint/9229/

Published
2025-06-19
How to Cite
Baromim Triwijaya, Setyoningsih Wibowo, & Nur Latifah Dwi Mutiara Sari. (2025). Performance Comparison of K-Means Algorithm and BIRCH Algorithm in Clustering Earthquake Data in Indonesia with Web-Based Map Visualization. JURNAL TEKNOLOGI DAN OPEN SOURCE, 8(1), 278 - 287. https://doi.org/10.36378/jtos.v8i1.4400
Abstract viewed = 0 times
PDF downloaded = 0 times