BCA Stock Price Prediction Using Time Series Method With GRU (Gated Recurrent Unit)
Abstract
Stock price prediction is a crucial component in investment decision-making, enabling investors to plan strategies more accurately and minimize risks. This study applies the Gated Recurrent Unit (GRU) model to predict the stock prices of blue-chip banking companies in Indonesia using data from the period 2019 to 2024. The model utilizes historical stock data to forecast future trends. The results from the first testing scheme, with a data split ratio of 70% / 30%, using GRU units (128,256) with the Adam optimizer, show that the GRU model is the most optimal in terms of prediction, measured by metrics such as MSE, RMSE, and MAPE. This study also proposes a web-based dashboard that visualizes the predicted stock prices and provides decision-support tools for investors. The findings highlight the effectiveness of deep learning in financial forecasting and underscore its potential to enhance investment strategies.
Downloads
References
I. A. Saputra, A. V. Vitianingsih, Y. Kristyawan, A. L. Maukar, and J. F. Rusdi, “Forecasting Model of Export and Import Value of Oil and Gas Using Gated Recurrent Unit Method,” Teknika, vol. 13, no. 2, pp. 239–243, Jun. 2024, doi: 10.34148/teknika.v13i2.861.
J. A. Ripto and H. Heryanto, “Penerapan Gated Recurrent Unit untuk Prediksi Pergerakan Harga Saham pada Bursa Efek Indonesia”.
K. Prayogi, W. Gata, and D. P. Kussanti, “Prediksi Harga Saham Bank Central Asia Menggunakan Algoritma Deep Learning GRU,” Jutisi J. Ilm. Tek. Inform. Dan Sist. Inf., vol. 13, no. 1, p. 647, May 2024, doi: 10.35889/jutisi.v13i1.1910.
Avrijsto Amandri Achyar, Ali Muhammud Olow, Muhammad Rizky Perdana, Andika Sundawijaya, and Aaqila Dhiyaanisafa Goenawan, “Identifikasi Ras Wajah dengan Menggunakan Metode Deep Learning Model Keras,” J. Tek. MESIN Ind. ELEKTRO DAN Inform., vol. 1, no. 1, pp. 29–37, Mar. 2022, doi: 10.55606/jtmei.v1i1.779.
A. Arwansyah, S. Suryani, H. Sy, U. Usman, A. Ahyuna, and S. Alam, “Time Series Forecasting Menggunakan Deep Gated Recurrent Units,” Digit. Transform. Technol., vol. 4, no. 1, pp. 410–416, Jun. 2022, doi: 10.47709/digitech.v4i1.4141.
A. P. Meriani and A. Rahmatulloh, “PERBANDINGAN GATED RECURRENT UNIT (GRU) DAN ALGORITMA LONG SHORT TERM MEMORY (LSTM) LINEAR REFRESSION DALAM PREDIKSI HARGA EMAS MENGGUNAKAN MODEL TIME SERIES,” J. Inform. Dan Tek. Elektro Terap., vol. 12, no. 1, Jan. 2024, doi: 10.23960/jitet.v12i1.3808.
D. Anjeli, S. T. Faulina, and A. Fakih, “Sistem Informasi Perpustakaan Sekolah Dasar Negeri 49 OKU Menggunakan Embarcadero XE2 Berbasis Client Server,” vol. 13, no. 2, 2022.
W. L. Seventeen and S. D. Shinta, “Pengaruh Economic Value Added dan return On Equity (ROE) Terhadap Harga Saham pada perusahaan Investasi yang Terdaftar Di BEI Tahun 2016-2019.,” JAZJurnal Akunt. Unihaz, vol. 4, no. 1, p. 138, Aug. 2021, doi: 10.32663/jaz.v4i1.2094.
G. A. Saputri and A. Suharsono, “Analisis Value at Risk (VaR) pada Investasi Saham Blue Chips dengan Pendekatan Copula”.
S. Samsudin, A. M. Harahap, and S. Fitrie, “IMPLEMENTASI GATED RECURRENT UNIT (GRU) UNTUK PREDIKSI HARGA SAHAM BANK KONVENSIONAL DI INDONESIA,” JISTech J. Islam. Sci. Technol., vol. 6, no. 2, Dec. 2021, doi: 10.30829/jistech.v6i2.11058.
S. Mulyani, D. Hayati, and A. N. Sari, “ANALISIS METODE PERAMALAN (FORECASTING) PENJUALAN SEPEDA MOTOR HONDA DALAM MENYUSUN ANGGARAN PENJUALAN PADA PT TRIO MOTOR MARTADINATA BANJARMASIN,” vol. 14, no. 1, 2021.
M. A. Ridla, N. Azise, and M. Rahman, “Perbandingan Model Time Series Forecasting Dalam Memprediksi Jumlah Kedatangan Wisatawan Dan Penumpang Airport,” SIMKOM, vol. 8, no. 1, pp. 1–14, Jan. 2023, doi: 10.51717/simkom.v8i1.103.
Febby Wilyani, Qonaah Nuryan Arif, and Fitri Aslimar, “Pengenalan Dasar Pemrograman Python Dengan Google Colaboratory,” J. Pelayanan Dan Pengabdi. Masy. Indones., vol. 3, no. 1, pp. 08–14, Mar. 2024, doi: 10.55606/jppmi.v3i1.1087.
“Karimah Tauhid, Volume 2 Nomor 1 (2023), e-ISSN 2963-590X,” vol. 2, 2023.
E. Retnoningsih and R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python,” BINA INSANI ICT J., vol. 7, no. 2, p. 156, Dec. 2020, doi: 10.51211/biict.v7i2.1422.
P. A. Nugroho, I. Fenriana, R. Arijanto, and M. Kom, “IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK ( CNN ) PADA EKSPRESI MANUSIA,” vol. 2, no. 1, 2020.
“Recurrent Neural Network (RNN) dan Gated Recurrent Unit (GRU).” Accessed: Jan. 06, 2025. [Online]. Available: https://socs.binus.ac.id/2017/02/13/rnn-dan-gru/
W. Hastomo, A. S. B. Karno, N. Kalbuana, E. Nisfiani, and L. Etp, “Optimasi Deep Learning untuk Prediksi Saham di Masa Pandemi Covid-19,” J. Edukasi Dan Penelit. Inform. JEPIN, vol. 7, no. 2, p. 133, Aug. 2021, doi: 10.26418/jp.v7i2.47411.
D. Suluh, D. E. Herwindiati, and J. Hendryli, “Peramalan Pertumbuhan Jumlah Outlet Menggunakan Metode Gated Recurrent Unit (Studi Kasus: PT XYZ),” Comput. J. Comput. Sci. Inf. Syst., vol. 8, no. 1, pp. 62–72, Apr. 2024, doi: 10.24912/computatio.v8i1.21234.
V. R. Danestiara, E. Setiana, I. Akbar, and T. Hidayah, “Algoritma Gated Recurrent Unit untuk Prediksi Harga Indeks Penutupan Saham LQ45,” J. Account. Inf. Syst. AIMS, vol. 7, no. 1, pp. 1–8, Mar. 2024, doi: 10.32627/aims.v7i1.814.
Copyright (c) 2025 Rizky Nugraha, Abdul Rezha Efrat Najaf, Reisa Permatasari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.