Predicting New Student Admissions with the SVM Regression Model in Data Mining
Abstract
Prediction is an action to predict future conditions based on past data. One method for making predictions that can be used is the linear regression method. The linear regression method itself consists of two types, simple linear regression and multiple linear regression. One method that uses past data to make predictions is the linear regression method. Regression is a statistical calculation to test how closely the relationship between variables. The simplest and most frequently used regression analysis is simple linear regression. In regression analysis, there is one dependent variable usually written with the symbol Y and one or more independent variables usually written with the symbol X. The relationship between the two variables has a linear nature according to its name. The SVM method was chosen for data mining analysis in this study. There are two parameters used: Exam Scores and Admission Status. This research uses recapitulation data on the acceptance of new students at Play Group & Kindergarten Rahmah Abadi with a total of 50 people. Based on the analysis results, an accuracy rate of 91%.
Downloads
References
Agung Handayanto, dkk (2019). Analisis dan Penerapan Algoritma Support Vector Machine (SVM) dalam Data Mining untuk Menunjang Strategi Promosi. JUITA: Jurnal Informatika e-ISSN: 2579-9801; Volume 7, Nomor 2, November 2019.
Caballé, N. C., Castillo-Sequera, J. L., Gómez-Pulido, J. A., GómezPulido, J. M., & Polo-Luque, M. L. (2020). Machine learning applied to diagnosis of human diseases: A systematic review. Applied Sciences, 10(15), 5135.
Charbuty, B., & Abdulazeez, A. (2021). Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2(01), 20-28.
Cortes, C., & Vapnik, V. (1995). Support Vector Networks. Machine Learning, 20(3), 273-297.
Dedi Darwis, Eka Shintya Pratiwi, A. Ferico Octaviansyah Pasaribu (2020). PENERAPAN ALGORITMA SVM UNTUK ANALISIS SENTIMEN PADA DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA. Jurnal Ilmiah Edutic/Vol.7, No.1, November 2020, p-ISSN 2407-4489 e-ISSN 2528-7303.
Dimas Aulia Trianggana (2020). Peramalan Jumlah Siswa-siswi melalui pendekatan metode regresi linier. Jurnal Media Infotama Volume 16. No.2 September 2020.
Dimas, R. (2020). Statistik untuk Pemula: Konsep dan Aplikasi. Jakarta: Pustaka Ilmu.
Dino, H. I., & Abdulrazzaq, M. B. (2019, April). Facial expression classification based on SVM, KNN and MLP classifiers. In 2019 International Conference on Advanced Science and Engineering (ICOASE) (pp. 70-75). IEEE.
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. Morgan Kaufmann.
Hendra Di Kesuma, Deni Apriadi, Hengki Juliansa, Endang Etriyanti.. Implementasi (2022). Data Mining Prediksi Mahasiswa Baru Menggunakan Algoritma Regresi Linier Berganda . Jurnal Ilmiah Binary STMIK Bina Nusantara Jaya , Vol. 0 4 No. 02 Tahun 2022, ISSN : 2657– 2117 | DOI : 10.52303/jb.v4i2.70.
Heryanto, B. (2022). Manajemen Pendidikan: Teori dan Praktik. Bandung: Alfabeta.
Is Siti Aisah, Bambang Irawan, Tati Suprapti (2023). ALGORITMA SUPPORT VECTOR MACHINE (SVM) UNTUK ANALISIS SENTIMEN ULASAN APLIKASI AL QUR’AN DIGITAL. JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 7 No. 6, Desember 2023.
Li, H. (2020). Text recognition and classification of english teaching content based on SVM. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-11.
Nilashi, M., Ahmadi, N., Samad, S., Shahmoradi, L., Ahmadi, H., Ibrahim, O., ... & Yadegaridehkordi, E. (2020). Disease Diagnosis Using Machine Learning Techniques: A Review and Classification. Journal of Soft Computing and Decision Support Systems, 7(1), 19- 30.
Putri Kurnia Handayani (2021). PENERAPAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) UNTUK ANALISIS POLA KLASIFIKASI PADA PARKINSON’S DATASET. Indonesia Journal of Technology, Informatics and Science (IJTIS) DOI: 10.24176/ijtis.v3i1.7530 Vol. 3, No. 1, Desember 2021, hlm. 31-35 p-ISSN: 2715-940X e-ISSN: 2721-4303.
Santoso, B. (2019). Prediksi Jumlah Siswa Baru dengan Pendekatan Statistik. Jurnal Pendidikan, 14(2), 123-134.
Satria Abimayu , Nurdin Bahtiar , Eko Adi Sarwoko (2023). Implementasi Metode Support Vector Machine (SVM) dan t-Distributed Stochastic Neighbor Embedding (t-SNE) untuk Klasifikasi Depresi. Jurnal Masyarakat Informatika ISSN: 2086-4930 Vol. 14, No. 2, 2023 e-ISSN: 2777-0648.
Shi, L., Wang, X., & Shen, Y. (2020). Research on 3D face recognition method based on LBP and SVM. Optik, 220, 165157.
Sugiyono. (2021). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.
Vadali, S., Deekshitulu, G. V. S. R., & Murthy, J. V. R. (2019). Analysis of liver cancer using data mining SVM algorithm in MATLAB. In Soft Computing for Problem Solving (pp. 163-175). Springer, Singapore
Vapnik, V. (1998). Statistical Learning Theory. Wiley.
M. L. Kolling, L. B. Furstenau, M. K. Sott, B. Rabaioli, P. H. Ulmi, N. L. Bragazzi, dan L. P. C. Tedesco, “Data Mining in Healthcare: Applying Strategic Intelligence Techniques to Depict 25 Years of Research Development,” Int. J. Environ. Res. Public Health, vol. 18, no. 6, p. 3099, Mar. 2021, doi:10.3390/ijerph18063099.
S. Ataallah Muhammed dan A. R. Aziz, “Predictive Modeling in Healthcare: A Survey of Data Mining Techniques,” ICCECS Proc., 2024.
Bánf, M. (2019). Learning Theory and Support Vector Machines – A Primer. arXiv.
Blanchard, G., Bousquet, O., & Massart, P. (2008). Statistical performance of support vector machines. arXiv.
Copyright (c) 2025 Pradani Ayu Widya Purnama, Nurmaliana Pohan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.












