Web Based Tour Package Selection Recommendation Information System Using Algorithmscontent Based Filtering
Abstract
Advances in information technology have facilitated easier access to information in various fields, including tourism. One of the challenges faced by tourists is choosing a tour package that suits their preferences and needs amidst the many available options. This research aims to design and build aWeb-Based Tour Package Selection Recommendation Information Systemusing algorithmsContent-Based FilteringThis method works by matching user profiles based on their preferences with descriptions and attributes of available tour packages. The system was developed using the PHP programming language and MySQL database, and implemented on a web platform for widespread access. Test results show that the system is capable of providing tour package recommendations relevant to user preferences, thus facilitating quick and accurate decision-making. This system is expected to improve the user experience in selecting tour packages and make them more satisfying.
Downloads
References
E. Ramadhanty and M. Christianti J, “Penerapan Metode Collaborative Filtering Pada Sistem Informasi Penjualan dan Pembelian Studi Kasus : Website Toko Helda Collection,” J. Strateg., vol. 2, no. 2, pp. 1–17, 2020.
Y. M. Kristania and S. Listanto, “Implementasi Data Mining Terhadap Data Penjualan Dengan Algoritma Apriori Pada Pt. Duta Kencana Swaguna,” J. Teknoinfo, vol. 16, no. 2, p. 364, 2022, doi: 10.33365/jti.v16i2.1973.
N. Azizah and A. F. Rozi, “Sistem Rekomendasi Produk Somethinc Menggunakan Metode Content-based Filtering,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 6, no. 3, pp. 461–468, 2024, doi: 10.47233/jteksis.v6i3.1411.
T. Rahma Syahri, “Sistem Informasi Reservasi Kamar Wisma Atlet Pada DISPORASU Berbasis Android,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 368–377, 2023, doi: 10.30865/klik.v4i1.1141.
D. A. N. Safitri, R. Halilintar, and L. S. Wahyuniar, “Sistem Rekomendasi Skincare Menggunakan Metode Content-Based Filtering dan Algoritma Apriori,” Semin. Nas. Inov. Teknol. (SEMNAS INOTEK), pp. 242–248, 2021, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/1136
M. W. Putri, A. Muchayan, and M. Kamisutara, “Sistem Rekomendasi Produk Pena Eksklusif Menggunakan Metode Content-Based Filtering dan TF-IDF,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 5, no. 3, p. 229, 2020, doi: 10.31328/jointecs.v5i3.1563.
C. Koloman, R. Maulana, R. Dwi, Z. Putri, and W. A. Harahap, “Sistem Rekomendasi Pekerjaan di bidang IT Menggunakan Algoritma Content-Based Filtering,” J. Creat. Student Res., vol. 1, no. 6, pp. 78–88, 2023, [Online]. Available: https://doi.org/10.55606/jcsrpolitama.v1i6.2992
Samsudin and A. Syahfitri, “PERANCANGAN PENJADWALAN SERVICE BENGKEL ARMADA PT.SUMATRASARANA SEKAR SAKTI BERBASIS WEB,” J. Educ. Technol., vol. 4, no. 2, pp. 222–232, 2023.
Okpatrioka, “Research And Development (R & D) Penelitian yang Inovatif dalam Pendidikan,” J. Pendidikan, Bhs. dan Budaya, vol. 1, no. 1, pp. 86–100, 2023.
Ignatius Joko Dewanto, Nur Aziz, and Wahyu Darmawan, “Sistem Pendukung Keputusan Pemilihan Perpanjangan Kontrak Kerja Karyawan dengan Metode SMART,” MAMEN J. Manaj., vol. 2, no. 1, pp. 9–21, 2023, doi: https://doi.org/10.55123/mamen.v2i1.903.
K. S. Nadhiva, A. Triayudi, and E. T. E. Handayani, “Implementasi Sistem Informasi Rekam Medis Berbasis Web Klinik Gigi menggunakan Metode Waterfall dan PIECES Framework,” J. Sist. dan Teknol. Inf., vol. 10, no. 1, p. 168, 2022, doi: 10.26418/justin.v10i1.50997.
Sunarmi, Yuda Syahidin, and Yuyun Yunengsih, “Perancangan Sistem Informasi Penyimpanan Rekam Medis Rawat Jalan Di Uptd Puskesmas,” INFOKES (Informasi Kesehatan), vol. 5, no. 2, pp. 66–77, 2021, doi: 10.56689/infokes.v5i2.466.
A. A. Huda, R. Fajarudin, and A. Hadinegoro, “Sistem Rekomendasi Content-based Filtering Menggunakan TF-IDF Vector Similarity Untuk Rekomendasi Artikel Berita,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1679–1686, 2022, doi: 10.47065/bits.v4i3.2511.
T. Ridwansyah, B. Subartini, and S. Sylviani, “Penerapan Metode Content-Based Filtering pada Sistem Rekomendasi,” Math. Sci. Appl. J., vol. 4, no. 2, pp. 70–77, 2024.
D. Prasetyo and R. Muliono, “JITE (Journal of Informatics and Telecommunication Engineering) Analysis Of Recommendation System On Travel Platform Using Content-Based Filtering And Collaborative Filtering Algorithms At PT. Angkasa Tour & Travel,” Jite, vol. 8, no. 3, pp. 81–92, 2025, [Online]. Available: http://ojs.uma.ac.id/index.php/jite
C. Shi and et al., “A forest fire susceptibility modeling approach based on light gradient boosting machine algorithm,” Forests, vol. 14, no. 7, p. 1506, 2023, doi: 10.3390/f14071506.
M. Medvedeva and T. Herawan, “Identification of peat-fire-burnt areas among other wildfires using multi-sensor remote sensing and machine learning,” J. Appl. Data Sci., vol. 5, no. 3, pp. 1175–1188, 2024, [Online]. Available: https://bright-journal.org/Journal/index.php/JADS/article/download/159/135
C. Shi, L. Zhang, and Y. Liu, “A forest fire susceptibility modeling approach based on light gradient boosting machine (LightGBM) with hyperparameter optimization,” J. Appl. Data Sci., vol. 4, no. 2, pp. 856–870, 2023, [Online]. Available: https://bright-journal.org/Journal/index.php/JADS/article/download/494/346
M. Yandouzi and M. Grari, “Semantic segmentation and thermal imaging for forest fires detection and monitoring by drones,” Bull. Electr. Eng. Informatics, vol. 13, no. 4, pp. 2345–2354, 2024, [Online]. Available: https://www.researchgate.net/publication/381097155_Semantic_segmentation_and_thermal_imaging_for_forest_fires_detection_and_monitoring_by_drones
S. Ahajjam, M. El Alaoui, and A. Farah, “Enhancing prediction of wildfire occurrence and behavior using machine learning and remote sensing in Mediterranean ecosystems,” Sci. Total Environ., vol. 956, p. 176089, 2025, doi: 10.1016/j.scitotenv.2024.176089.
A. W. Ali, S. Kumar, and A. Singh, “Optimizing deep learning models for fire detection: A comprehensive review of architectures, datasets, and performance metrics,” Fire, vol. 8, no. 2, p. 36, 2025, doi: 10.3390/fire8020036.
Y. Cao, X. Li, and J. Wang, “Forest fire prediction based on time series networks and remote sensing images,” Forests, vol. 15, no. 7, p. 1221, 2024, doi: 10.3390/f15071221.
B. M. Diaconu, M. Wotton, and M. D. Flannigan, “Recent advances and emerging directions in fire detection, prevention, and propagation modeling with machine learning,” Fire, vol. 6, no. 11, p. 441, 2023, doi: 10.3390/fire6110441.
M. Fasihi and P. O. Olsson, “Assessing ensemble models for carbon sequestration and storage estimation in boreal forests using remote sensing and machine learning,” Sci. Total Environ., vol. 952, p. 174566, 2024, doi: 10.1016/j.scitotenv.2024.174566.
P. Janiec and P. Prokop, “A comparison of two machine learning classification methods for fire risk assessment in protected areas,” Remote Sens., vol. 12, no. 24, p. 4157, 2020, doi: 10.3390/rs12244157.
Copyright (c) 2025 Al Dimas, Muhammad Alda

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium. Users are allowed to read, download, copy, distribute, search, or link to full-text articles in this journal without asking by giving appropriate credit, provide a link to the license, and indicate if changes were made. All of the remix, transform, or build upon the material must distribute the contributions under the same license as the original.












