WhatsApp Chat Fraud Analysis Using Support Vector Machine Method

  • Fathur Rahman
  • Irfansyah Irfansyah
  • Rivaldi Dwi Andhika
  • Junadhi Junadhi
Keywords: Support, Vector, Machine, Fraud, Whatsapp

Abstract

Fraud is one of the most cyber crime on social media. One of the popular social media in Indonesia is Whatsapp. Cases of fraud through chat on Whatsapp application often occur in Indonesia, its due to lack of information. The research conducted related to the detection of words containing fraud in WhatsApp chat application. The methods in this research applies the literature study method to find secondary data in the references theories and relevant research. The data collection is carried out by collecting chats that lead to fraud cases and then processing them using RapidMiner application with SVM (Support Vector Mechine) method. The results of this research can be concluded that this research succeeded in implementing SVM algorithm for whatsapp fraud chat analysis with an accuracy rate of 84.21%

Downloads

Download data is not yet available.

References

[1] J. Johnson, “Countries with the highest number of internet users Q1 2021,” Statista, 2021. https://www.statista.com/statistics/262966/number-of-internet-users-in-selected-countries (accessed Aug. 20, 2021).
[2] M. B. Romney and P. J. Steinbart, Accounting Information Systems, 13th ed. 2015.
[3] A. T. Haryanto, “Survei: 89% Orang Indonesia Pakai WhatsApp Untuk Komunikasi,” detikinet, 2021. https://inet.detik.com/mobile-apps/d-5594057/survei-89-orang-indonesia-pakai-whatsapp-untuk-komunikasi (accessed Aug. 05, 2021).
[4] Patrolisiber.id, “Statistik Laporan Kejahatan Siber,” Direktorat Tindak Pidana Siber, 2021. https://patrolisiber.id/statistic (accessed Aug. 18, 2021).
[5] D. Mulyadi, “Unsur-Unsur Penipuan Dalam Pasal 378 Kuhp Dikaitkan Dengan Jual Beli Tanah,” J. Ilm. Galuh Justisi, vol. 5, no. 2, p. 206, 2017, doi: 10.25157/jigj.v5i2.798.
[6] A. . N. Wirasila, A. . N. Y. Darmadi, and S. P. M. E. Purwani, BUKU AJAR TINDAK PIDANA TERTENTU DALAM KUHP. 2017.
[7] W. A. Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis Sentimen Cyberbullying Pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 11, pp. 4704–4713, 2018.
[8] A. Setiyono and H. F. Pardede, “Klasifikasi Sms Spam Menggunakan Support Vector Machine,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 275–280, 2019, doi: 10.33480/pilar.v15i2.693.
[9] A. N. Ulfah and M. K. Anam, “Analisis Sentimen Hate Speech Pada Portal Berita Online Menggunakan Support Vector Machine (SVM),” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 1, pp. 1–10, 2020, doi: 10.35957/jatisi.v7i1.196.
[10] A. M. Puspitasari, D. E. Ratnawati, and A. W. Widodo, “Klasifikasi Penyakit Gigi Dan Mulut Menggunakan Metode Support Vector Machine,” J-Ptiik, vol. 2, no. 2, pp. 802–810, 2018, [Online]. Available: http://j-ptiik.ub.ac.id.
[11] P. Yuniasari and F. Maspiyanti, “Analisis Sentimen Data Tweet menggunakan Metode Support Vector Machine ( Studi Kasus : Pemindahan Ibukota Baru Republik Indonesia ),” J. Informatics Adv. Comput., vol. 2, no. 1, 2021.
[12] I. Romli and B. M. Putra, “Evaluasi Penilaian Kinerja Dalam Klasifikasi Data Mining Dengan Metode Naive Bayes,” J. Pelita Ind., vol. 1, no. 1, pp. 36–45, 2020.
[13] C. D. Manning, P. Raghavan, and H. Schutze, “Introduction to Modern Information Retrieval (2nd edition),” Cambridge Univ. Press, 2009.
[14] B. Patel and D. Shah, Significance of Stop Word Elimination in Meta Search Engine. IEEE, 2013.
[15] F. Akthar and C. Hahne, “RapidMiner 5 Operator Reference,” 2012.
[16] L. Liu and M. T. Ozsu, Encyclopedia of Database Systems. 2009.
Published
2021-12-20
Abstract viewed = 309 times
pdf downloaded = 261 times